【摘 要】
:
R-245fa作为一种制冷剂,在常温条件下具有低饱和压力、较低的凝固温度、不易燃和很好的材料相容性,相比于其他制冷剂来说R-245fa的低饱和压力能够减轻设备重量同时也易于维护.R-245fa制冷系统的设计和研发需要进行管内流动沸腾换热计算.对于大部分的工程应用,例如制冷系统中的蒸发器,两相流动沸腾是饱和流动沸腾.所以流动沸腾研究中,大部分关注的是饱和流动沸腾.
【机 构】
:
南京航空航天大学航空宇航学院人机与环境工程系,南京210016
论文部分内容阅读
R-245fa作为一种制冷剂,在常温条件下具有低饱和压力、较低的凝固温度、不易燃和很好的材料相容性,相比于其他制冷剂来说R-245fa的低饱和压力能够减轻设备重量同时也易于维护.R-245fa制冷系统的设计和研发需要进行管内流动沸腾换热计算.对于大部分的工程应用,例如制冷系统中的蒸发器,两相流动沸腾是饱和流动沸腾.所以流动沸腾研究中,大部分关注的是饱和流动沸腾.
其他文献
飞机座舱内空气循环系统是保障乘客舒适性、降低污染物扩散的重要环节,是民航客机重要考量设计之一。双向送风系统是一种典型的座舱内送风结构,会在座舱内的流动中出成了对扰动及其敏感的异宿轨道。针对座舱内流场进行的实验测量和数值模拟都表明,在出现双向送风速度或舱内几何物形不对称等扰动情况下,异宿轨道将被撕裂,拓扑结构将发生多模态的变化,甚至在座舱不同横截面间出现不同的拓扑模态,以及会出现不同模态间的切换,造
横流失稳是后掠流动中的典型失稳机制,存在定常涡与行进波两种失稳模态。在高空飞行环境中,自由流湍流度较低,定常涡模态主导转捩过程。边界层内的定常涡扰动先后经历线性及非线性增长阶段,非线性作用使扰动幅值达到饱和,但不能促发边界层的转捩。实验及理论研究发现,二次失稳过程是横流失稳导致边界层转捩的关键阶段。二维全局(bi-global)稳定性分析是研究横流二次失稳的主要理论方法。传统的理论分析框架建立在涡
工程实际遇到的三维边界层中,存在着一类边界层,其展向变化远大于流向变化,但又小于法向变化.如小攻角圆锥的绕流问题,见下图1.在背风面的附近存在流向涡,用LST方法预测扰动的增长率,与数值模拟比较,误差较大.对于小攻角组合体飞行器的扰动,在迎风面对称轴附近,用流动稳定性(LST)进行分析,可以发现,存在展向较窄的增长区,如图2.在迎风面对称轴附近用LST方法预测扰动的增长率与数值模拟比较的误差也较大
高超声速飞行器前体压缩面加装强制转捩装置是保证流动进入进气道前转捩为湍流的有效手段,不同的粗糙单元外形促进转捩的效果各有差异,其带来的额外阻力和热流增量也不同,因此在确定外形时需要权衡多方面因素.Berry[1]等对不同外形的边界层强制转捩装置(菱形、斜坡型和三角锥型等)进行了实验研究,最终选出了一种后掠斜坡型粗糙单元作为试飞采用的转捩装置.张明华等[2]的研究结果表明,对于斜坡型粗糙单元,几何参
本文利用可压缩多介质粘性流动和湍流大涡模拟程序MVFT-2D(Multi-viscous Flow and Turbulence),有效地研究了初始非均匀流场密度为高斯分布,激波Ma=1.27情况下,高、低密度区中多组不同初始振幅组合扰动对双模态Richtmyer-Meshkov不稳定性发展的影响.数值模拟结果表明,处于非均匀流场低密度区的初始大振幅界面的扰动增长最快,高密度区的初始小振幅界面扰动
冲击波加速不同流体间带有预制初始扰动的密度间断界面会导致Richtmyer-Meshkov (RM)不稳定性发生,后期又诱发湍流混合。该问题在诸如惯性约束聚变、超音速燃烧、天体物理等领域有广泛应用,所以具有重要的研究价值。本文利用可压缩多介质粘性流动和湍流大涡模拟程序MVFT(multi-viscousflow and turbulence),数值模拟研究了带有反射冲击的多模态RM不稳定性及其诱发
本文通过建立一个三维数值波浪水槽,并采用大涡模拟技术,针对内波对双细长结构的作用力以及内波环境下两串列圆柱之间的相互扰动进行了数值模拟.同时考虑了不同内孤立波波幅(ηa)、不同柱中心间距(L)对作用力的影响.利用垂向平均涡量和压强梯度等值线图解释了柱间的扰动现象以及内波对圆柱的作用规律.在相同内波环境下,把计算结果与单柱情况进行了对比.研究结果表明:两柱之间的相互作用在上下层水体中都会发生,且当1
为了探究水吸入对压气机性能的影响,开展了对某型多级轴流压气机在来流含水情况下的性能研究.分别从液滴与干壁面和湿壁面的碰撞特开始分析,计算液滴在叶片表面的沉积率、飞溅的二次液滴含量及叶片表面附面层的含量及其蒸发过程.分别使用含液滴模型和不含液滴模型的计算程序来计算水吸入对压气机性能的影响.结果 表明,相同条件下,水吸入会导致工质质量流量和气体常数增加,混合气体比热比下降.考虑液滴模型时,水的蒸发率,
在海洋与大气相互作用中,海喷液滴作为一种离散介质,对海洋与大气之间的质量交换、动量交换以及热量交换起到了非常重要的作用。本文通过直接数值模拟(DNS)并结合Lagrange粒子追踪方法描述大气湍流流动和液滴的运动,旨在研究大气中海喷液滴对大气动力学特性与热力学特性的影响。研究中采用海喷液滴浓度函数生成海喷液滴的初始粒径和体积浓度,同时考虑了海喷液滴在大气中的蒸发凝结过程,建立大气与海喷液滴之间的质
采用多组分混合物质量分数模型和最小色散可控耗散格式(MDCD)的高分辨率有限体积方法,数值模拟了弱激波冲击不同角度的“V”形air/SF6界面的RM (Richtmyer-Meshkov)不稳定性问题。激波冲击界面后,首先在界面附近沉积涡量,形成沿界面规则排列的漩涡结构,同时界面扰动发展形成“气泡”和“尖钉”结构。