微流控双T通道制备聚丙烯腈微球

来源 :第十三届全国核靶技术学术交流会 | 被引量 : 0次 | 上传用户:quanminyingyang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  作为惯性约束核聚变反应(ICF)中装载燃料气体氘氚(DT)的靶丸,是微胶囊的一项重要应用。在ICF靶中,对于靶丸的粒径大小、粒径分布、壁厚均匀性等有着很高的要求。传统的靶丸制备方法,得到的微胶囊尺寸不均一、制备效率不高、原料消耗大,且制备装置复杂、操作繁琐。微乳液的制备是靶丸的第一步,其制备的稳定性、同心度等质量的好坏直接关系到后面的固化、干燥的效果。在本实验中,我们使用一种双T微通道乳液生成装置来制备双重乳液。双T微通道是在微流体芯片上设计两个T型通道,第一个T型通道的出口是第二个T型通道的入口,当O1和W相通过第一个T型通道形成O1/W微乳液后,再通过第二个T型通道形成O1/W/O2双重微乳液,两步乳化分开进行。这种通道的优点是装置简单,并且两步乳化可以分开控制;缺点是两步乳化之间相互影响,并非完全独立,因此,控制双重微乳液的大小需要靠两步乳化共同实现。然后通过优化的固化以及干燥步骤,成功制得了粒径300-1000μm,壁厚20-300μm的聚丙烯腈(PAN)微胶囊。与传统制备方法相比,基于微流控技术的微通道装置制备的微胶囊单分散性好、产率高、可控性强。微乳液技术可以说是目前最易实现,且成球效果最好的方法。其装置简单易操作,实验环境友好,且可以实现连续、可控制备,制备出的空心微球同心度较好,直径和壁厚也可以控制。微流体技术作为一项新兴的技术,可以集成化和微型化微乳液制备方法,提高制备精确度和实现量产化。
其他文献
系统介绍了以功率超声对我国主要高产水稻品种的种子处理导致的各种效应及其在高产、优质水稻安全培植上的应用,并对相关关键技术和设备作了简要介绍.长期研究结果表明功率超声处理水稻种子可以导致水稻的有效穗数、颖花数、增加每穗整粒数和稻穗结实率从而使产量均显著增加,能提高植株抗倒伏、抗病虫害能力.能改善二次代谢过程、显著降低稻米的垩白粒率和垩白度,显著改善稻米的外观品质和米饭口感;连续化、全自动功率超声育种
实验中得到的多泡声致发光光谱总是有一定的展宽与频移,而展宽与频移又对应着声致发光物理过程中众多的物理信息,包括物质组份、温度、压强等.从理论上分析,声致发光光谱线型主要是高斯线型与洛伦兹线型的卷积结果,因此本文通过卷积的方法,分析了NaOH 溶液中多泡声致发光Na原子发射光谱的精细结构,发现其总展宽与中心波长位移分别为0.4818nm 与0.168nm,对应的高斯展宽为0.0853nm、洛伦兹展宽
超声空化难以广泛应用在工业生产中,其主要原因是当声强达到一定程度后,液体中出现的空化泡会阻碍声能量的传播,限制了超声空化发生的范围.本文采用定点测量声压和谱分析方法,得到长方形水槽中声场分布特性,为进一步研究实现大规模声空化的方法提供实验依据.
本文通过数值求解Keller-Miksis方程,研究了超声空化泡的半径频率响应.通过引入了一个简化的温度估计模型,进一步研究了超声空化泡的温度频率响应.计算发现,当声压幅值超过120kPa 时,低频响应反而超过共振频率处的响应.本文对这种现象做了定性分析和解释,并指出在声化学领域,为获取较高的泡内温度宜选用较低频的功率超声换能器.
含气泡液体中声传播问题具有重要而现实的意义.本文通过求解相互耦合的气泡动力学方程与非线性声波方程模拟水中的空化情况.对含气泡液体中的空化场声波信号进行分析,探究气泡大小对于声场空间相关性的影响.结果表明:在气泡数密度不变情况条件下,在气泡大小为4.5um时,相关系数表现为正弦形状,随着气泡初始半径的增大,相关系数会由有序正弦形状逐渐经历无序的变化,当气泡大小为80um和100um时,相关系数随观测
聚变能源堆采用氚增殖剂与中子反应生成氚来保证其燃料的“自持”,即聚变反应消耗的氚能从聚变堆生产的氚得到补偿.从上世纪80年代开始,在国家863计划聚变-裂变混合堆项目资助下,中国工程物理研究院开展了产氚陶瓷材料的制备与产氚相关性能的研究工作,先后开发了喷雾干燥热解法生产γ-LiAlO2超细粉工艺、压模成型法制备γ-LiAlO2多孔陶瓷芯块、行星式滚动法制备Li2ZrO3陶瓷微球;从2004年开始开
线聚焦换能器在无损检测、生物医学超声及工业等领域均有广泛应用.本文推导了拉东逆变换实现二维声场投影像得到三维声场空间分布的计算方法.通过纹影法实验得到线聚焦超声声场在液体中的二维声场投影分布,并利用拉东逆变换得到了三维声场分布.在此基础上用声场校准方法得到了反变换后线聚焦换能器轴线上的声场随轴线变化,与有限元计算结果进行了比较,结果与有限元结果符合良好.结果表明利用拉东逆变换可以得到声场的三维分布
超大功率超声波采油技术利用大功率超声波来处理、激励油气储集层,实现油藏整体采收率的目的.目前对于超声波能量传输问题尚未确切的研究,故本文从能量传输的角度出发分析计算了超声波能量的损失情况.首先,从柱面波理论出发计算了柱声源情况下声波的扩散衰减、散射衰减以及吸收衰减;其次,计算超声波在液固界面及固固界面处的散射衰减,得到超声波最终到达储油层中的透射声强为初始声强的17.68%.然后,计算了超声波在原
氢同位素气体的定量分析在国防、能源和国民经济领域中都至关重要,其分析方法有气相色谱法、质谱法、红外光谱法等,而拉曼光谱法是唯一能在较短的时间内,定性和定量在线分析所有氢同位素分子(H2、HD、D2、HT、DT、T2)的检测手段.在很多著名实验室(如JAERI,SRS和KIT等)和国际合作项目中(如ITER)都已经开始应用.本工作以无损、在线分析气固反应过程中气体含量的变化为目的.建立了激光拉曼光谱
金属氚化物的3He释放行为受材料的影响很大,研究表明,氚化铒早期的3He释放速率比氚化钛要高两个量级.因此设想,将氚化钛膜覆盖在氚化铒膜表面形成多层膜,利用氚化铒膜内的3He释放量比较大,且总是要穿越氚化钛膜表面才会释放出来这一特点,从其3He释放的差异中获取更多金属氚化物中3He行为的信息.