片状Fe3O4/N掺杂的碳纳米复合物的合成及其锂电性能研究

来源 :中国化学会第30届学术年会 | 被引量 : 0次 | 上传用户:ralphth
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  过渡金属氧化物Fe3O4在充放电过程中表现出的差电子导电性和较大体积变化都阻碍了它在锂电池中的实际应用[1,2]。通过纳米包覆技术引入外壳材料可以改变Fe3O4内核的表面性质(如表面电荷、反应特性),使内核稳定性与分散性得到明显提高,提升内核材料在电学器件等方面的特性[3,4]。
其他文献
  锂硫电池具有高的能量密度,被认为具有前景的下一代动力能源存储体系。然而仍有一些重要的问题制约着锂硫电池的实际应用,如活性物质的低利用率和容量的快速衰减。通过多离
  锂硫电池因具有高能量密度,价格低廉以及环境友好等而被视为具有潜力的电化学能源存储体系之一,然而硫的电导率极低,由多硫化物的“穿梭效应”引起的容量衰减严重制约着锂硫
  锂硫电池中基于常规环状S8分子的正极研究非常普遍,然而硫的另一类同素异形体链状硫,相应的电化学研究却非常有限。这里,我们将硫链装入单壁和双壁碳纳米管中,作为一模型体系
  聚乙二醇(PEO)/Li+固体聚合物电解质一直是相关科研领域的热点[1,2]。普遍认为,该体系中PEO分子链的运动性、Li+的密度、运动方式及速率等对其电导率有重要的影响。本工
  随着市场需求量的增加,高安全性、可靠性成为人们对锂离子电池的基本要求[1]。为了提高锂离子电池的安全性、可靠性,深入系统的研究电池的失效原因十分重要,包活分析不同
  全固态锂离子电池采用固态离子导体替代液态电解质,可避免目前锂离子电池存在的泄露、腐蚀和易燃等安全性问题,其发展的关键是找到具有高离子电导率和宽电化学工作窗口的固
  全球信息化技术的飞速发展和便携式电子设备的广泛应用对锂离子电池材料提出了更高的要求,研究更安全、更高比容量的负极材料已成为一个重要的方向.[1].Li3VO4材料与传统
  硅(Si)作为锂离子电池负极材料时,因具有很高的理论储锂容量、低的嵌锂电位而备受瞩目。但是,Si基材料在脱、嵌锂循环过程中要经历严重的体积膨胀和收缩,致使容量迅速衰
  Li4Ti5O12(LTO)has been considered as a promising anode material for lithium-ion batteries(LIBs).
会议
  本文通过固相法合成了Na+、Mg2+金属离子掺杂的BaLi2Ti6O14,并对合成样品进行了结构、形貌和电化学性能表征.XRD结果表明,微量Na+、Mg2+离子掺杂不会引起BaLi2Ti6O14晶体