Limit Cycles from a Symmetric Nonlinear Center of Liénard System

来源 :2015年微分方程与动力系统研讨会 | 被引量 : 0次 | 上传用户:xcswzq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  In this talk,we will introduce a Li′enard System with a symmetric nonlinear center,and discuss the limit cycles from the symmetric nonlinear center under small perturbation.
其他文献
  本报告叙述了平面微分动力系统关于焦点量计算的线性递推方法,给出了该方法在一类生物入侵模型和一类反应扩散方程中的应用;叙述了平面微分动力系统关于周期常数计算的复系
会议
  In this talk,we are concerned with a singularly perturbed higher-order KdV equation which is considered as a paradigm in nonlinear science and has many appl
会议
  In this talk we introduce persistent center problem of planar differential systems,and give answers for some systems and its relation between complex system
会议
  In this talk,we will give an analytical proof about the existence of Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yie
会议
  我们主要讨论素数差集的结构,特别说明它是一个有限间隔的集合,同时,我们将对相关的背景和关联的问题作细致介绍。
会议
  We shall recall briefly how can be the local phase portraits of the equilibrium points of an analytic differential system in the plane,and we shall put our
会议
  In this talk,we shall report some aspects of nonlocal dispersal systems.First,we will present some relations between local(random)and nonlocal dispersal pro
会议
  呈示是群论中的一个重要概念,也是一个重要理论。在19 世纪末20世纪初期,它与学科分支,像几何学、自守函数论、拓扑学等的交叉发展极大推动了彼此的发展。
会议
  材料科学是一门新兴的交叉学科,偏微分方程在其中有着重要的应用。材料中的微结构决定了材料的宏观性质,而驱动微结构演变的力是构行力。基于构行力的一个数学公式和热力学
会议
  For analytic differential systems(x)= Ax+f(x)in Fn with F = R or C,we first study the varieties of their partial integrability in a neighborhood of the orig
会议