分子电荷态对单个分子转动特性的控制

来源 :中国化学会第29届学术年会 | 被引量 : 0次 | 上传用户:xuguai19811025
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  观察并控制单个分子的旋转运动对于纳米机械研究具有重要的意义。在单个分子的尺度上精确地控制分子旋转的方向、速度、及旋转的开关状态是目前研究中面临的挑战。通过低温扫描隧道显微镜实验,我们发现超薄氯化钠双原子层上的单个镁卟啉分子的转动特性可以通过其电荷态来调控。在电荷中性态下,分子的转动被完全抑制;在正电荷态下,该分子能在电流激发下作较大角度的旋转震荡。超薄绝缘层减弱了分子与金属衬底的耦合,使得电子激发和电荷态的控制得以实现。通过测量旋转速率与样品偏压的关系,发现分子旋转激发的阈值能量与HOMO态边缘重合,揭示了分子旋转来源于电子共振激发过程。同时,分子激发几率与隧穿电流强度成正比,与独立单电子激发过程的特性相吻合。我们还发现分子的电荷态可以通过电流来操纵。结合第一性原理计算,我们在原子尺度上阐明了分子电荷态和转动的控制机理,为最终实现可控的分子马达提供了新的思路和方案。
其他文献
  近几年来,原子力显微技术(Atomic Force Microscopy,AFM),特别是非接触式原子力显微技术(Noncontact AFM,NC-AFM),取得了快速而令人惊叹的进展,实现了包括表面原子的化学
会议
在长期的作文教学中,我发现我们的学生并不是不愿意写,而是不知道要写什么。叶圣陶先生说得好:“作文这件事离不开生活,生活充实到什么程度,才会做成什么文字。”生活就如泉源,文章犹如溪水,泉源丰盈,溪水自然活泼地流个不停;泉源枯萎,溪水自然越来越少甚至枯竭。然而,两点一线的生活,像复印机一样机械而单调。学生们就在这样的学习生活中慢慢地丧失了生活的来源,也慢慢丧失了对自然和社会的好奇心、观察力和敏锐感。一
  有机电子和光电器件中各异质材料之间组成的界面结构是影响和决定器件性能的重要因素之一,如何构建合理的界面以提高器件效率和稳定性是目前研究的核心问题。报告将结合
会议
纳米材料由于其空间尺寸与电磁波波长、德布罗意波波长等物理性质参数达到相同数量级甚至更低,导致自身光、电、磁等物理性能与块体材料相比发生极大变化。并且由于材料尺寸的
旅游和旅行已成为世界最高效和快速发展行业之一。根据世界旅游组织的报告,基于对全球国内生产总值(GDP)、世界出口贸易等业务的贡献,国际旅游业是世界上最大的产业,它产生了世
人乳头瘤病毒(HPV)是引起宫颈癌和尖锐湿疣等疾病的主要因素,如何预防与治疗HPV引起的疾病已成为世界性的课题。HPV预防性疫苗是目前公认的预防宫颈癌和尖锐湿疣发生的最有效
固液界面是电化学过程发生的场所,从分子和纳米尺度研究电极固液界面的结构与反应 过程是电化学研究的重要挑战,将为调控电化学反应过程,发展高性能电化学器件提供基础支持.
会议
  构筑固体表面的分子自组装结构,研究表面反应对于实现功能化表界面,发展新型纳米材料,制备纳米器件等具有重要的意义。利用分子间相互作用在表面构筑高度有序的功能分子阵列
会议
β-二甲基巯基丙酸内盐(DMSP:dimethylsulfoniopropionae;分子式(CH3)2-S-CH2-CH2-COOH)是一种广泛存在于海洋表面水体的有机生源含硫化合物,它不仅在海洋生态系和生物地球化
蜂蜜热量更高rnHigh-sugar diets raise risks for heart disease, obesi?ty and diabetes, but we do love our sweets, so health experts have tried to suggest alternat
期刊