Stability of symmetric Runge-Kutta methods for neutral delay integro-differential equations

来源 :第十六届全国微分方程数值方法暨第十三届全国仿真算法学术会议 | 被引量 : 0次 | 上传用户:aiwoba1215
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  The aim of this paper is to analyze the delay-dependent stability of symmetric Runge-Kutta methods,including the Gauss methods and the Lobatto ⅢA,ⅢB,and ⅢS methods,for the linear neutral delay integro-differential equations.
其他文献
  In this paper,we study a posteriori error estimates of Crank-Nicolson-Galerkin type methods for time discretizations of reaction-diffusion equations with de
  We first present a new delay-dependent fractional generalization of Halanay-like inequality to characterize the asymptotic behavior of fractional functional
会议
  本文构造和研究了高维辐射扩散与热传导耦合方程组{θTa/θt=1/ρcvediv(KegradTe)-wai/cve(Te-Ti)-ack/ρcve(T4e-T4τ),θTi/θt=1/ρcvidivKigradTi)+wai/cvi(Te-Ti)。
  本报告旨在介绍三维Volterra 型积分微分方程的向后Euler 和二阶BDF 交替方向隐式差分格式。时间导数利用分别利用向后Euler 和二阶BDF 格式,对Riemann-Liouville 分数阶
  本次报告主要讨论分数阶相场模型的能量稳定性理论以及分数阶Allen-Cahn 方程的最大值原理.相关保持最大值原理的数值方法也将一并介绍.报告最后将提出一些open question
会议
  In this talk,two classes of finite difference methods are constructed to solve the space fractional semi-linear delay reaction-diffusion equations.
  In this paper,we propose a space-time finite element method for the distributed-order time fractional reaction diffusion equations(DOTFRDEs).
  This talk presents a weak Galerkin(WG)finite element method for the Cahn-Hilliard equation.The WG method makes use of piecewise polynomials as approximating
  In this talk,new weak second-order stochastic Runge-Kutta(SRK)methods for It(o)stochastic differential equations(SDEs)with an m-dimensional Wiener process a
  In this paper,we establish the unconditional stability and optimal error estimates of a linearized backward Euler–Galerkin finite element method(FEM)for th