【摘 要】
:
Land use change is the second main reason for carbon(C)emissions after fossil fuel combustion,and it is recognized as an important driving force for soil organic carbon(SOC)and soil nitrogen(N)dynamic
【机 构】
:
Key laboratory of Bamboo and Rattan,International Centre for Bamboo and Rattan,Beijing 100102,P.R.Ch
论文部分内容阅读
Land use change is the second main reason for carbon(C)emissions after fossil fuel combustion,and it is recognized as an important driving force for soil organic carbon(SOC)and soil nitrogen(N)dynamics.Conversion of the secondary forest to Chinese fir(Cunninghamia lanceolata [Lamb.] Hook)and Moso bamboo(Phyllostachys heterocycla [Carr] Mitford cv.Pubescens)plantations represents one of the most important land use changes in subtropical China.However,the effects of these land use changes on the SOC and N stocks were not well documented.Therefore,in this study soil samples were collected in a secondary forest,a 17-year Chinese fir and a 18-year Moso bamboo plantation after the conversion from the secondary forest in November 2013,and total SOC and N concentrations were measured.Total SOC and N concentrations decreased with soil depth over the 0-50 cm in three land uses,and they were significantly higher in the secondary forest than those of Chinese fir and Moso bamboo plantations; however,these concentrations were not significantly different between Chinese fir and Moso bamboo plantations.Top soil(0-10 cm)accumulated one third of total SOC and N stocks.SOC and N stocks in the secondary forest were significantly higher than those of Chinese fir and Moso bamboo plantations with values of 203.68,127.34 and 118.25 t·ha-1 for SOC stock and 9.24,5.10 and 6.35 t·ha-1 for N stock.The results indicated converting the secondary forest to Chinese fir and Moso bamboo plantations significantly decreased the SOC and N stocks over 0-50 cm.
其他文献
生理整合是克隆植物实现资源共享,增强对异质生境适应能力的重要手段.其中,水分生理整合是克隆植物最为重要的生理整合之一,解析竹子水分生理整合特征对于竹林水分科学管理具有重要意义.该研究以分株地下茎相连的美丽箬竹(Indocalamus decorus)盆栽苗为试验材料,设置2个盆栽基质相对含水率(高水势:(90%±5%)和低水势:(30%±5%))和5个分株比例(1:3、1:2、1:1、2:1、3:
本文以筇竹为研究对象,对其不同季节光合日变化特征进行了系统的研究.结果表明:春、夏、秋3个季节,筇竹净光合速率日均值分别为4.09,7.81,5.51μmol CO2·m-2·s-1;蒸腾速率日均值分别为1.95,2.62,2.51mmolH2O·m-2·s-1;日均水分利用效率为1.99,2.95,2.09μmol CO2·mmol-1H2O.夏季净光合速率、蒸腾速率和水分利用率日均值均大于春季
本研究根据Ty3-gypsy反转录转座子反转录酶的保守序列设计简并性引物,从毛竹、绿竹、菲白竹、龟甲竹中扩增出了430bp左右的目标片段.目的条带经克隆、回收、测序及相关生物信息学软件进行序列分析后,获得了160条Ty3-gypsy反转录转座子反转录酶序列.这些核苷酸序列具有一定的异质性,长度变化范围为366~438bp,同源性范围为65.4%~84.5%.翻译成氨基酸后,将其氨基酸序列与不同物种
厚壁毛竹(Phyllostachys edulisPachyloen)是毛竹多个变异类型中唯一一个有用材价值的优良新品种,但其分子遗传机制并不为人所知.利用第二代高通量测序技术从霜降节气开始,对从霜降、大寒、冬至、雨水、春分、谷雨6个节气采集的厚壁毛竹笋芽分别进行转录组测序,共捕获30555个基因,基因平均覆盖率79%.将不同节气的竹笋的转录组进行两两比较,首次证实厚壁毛竹笋在不同节气基因表达有差
本文对梁山慈竹体细胞突变体NO.30的生物量以及品质特性,如纤维素含量、木质素含量和纤维形态等相关指标进行了研究.结果表明,与同龄的实生苗相比,NO.30突变体具有生物量大、纤维素含量高、纤维长、长宽比大等特性.尽管No.30突变体中木质素含量也有升高,但S/G值并没有明显改变,表明木质素脱除的难易程度并未受影响.基因表达分析表明,在No.30突变体中,纤维素生物合成途径中的CesA和木质素生物合
TFL1同源基因在保持植物营养生长和花序分生组织特性中起着重要的作用.然而,竹子TFL1基因的功能尚不清楚.本文从绿竹(Bambusa oldhamii)中克隆得到了TFL1同源基因,命名为BoTFL1.聚类分析表明BoTFL1与其他禾本科的TFL1同源基因相似度为90%.定量PCR结果显示BoTFL1在花芽的表达量是营养芽的3.5倍.转基因结果显示,BoTFL1过量表达能够使拟南芥延迟5-9天开
为了扩大厚竹繁殖系数,完善厚竹埋鞭育苗技术体系,以厚竹竹鞭为材料,采用随机区组试验设计,研究水分条件、覆盖措施、埋鞭方式和竹鞭性状对厚竹埋鞭育苗的影响.结果表明:不同的水分条件对出笋率和出笋时间影响极为显著,对竹笋地径影响显著,埋鞭时边覆土边浇水有利于促进笋芽萌发和提早出笋.埋鞭后不同的苗床覆盖措施对出笋率、竹笋地径和出笋时间的影响均显著,用茅草或遮阳网覆盖有利于促进笋芽萌发和提早出笋.泥浆处理后
本文将稻草和砻糠作为雷竹林地覆盖基础层,本着保温、透气、保湿、环保、经济、易得等原则,选择鸡粪、麦麸、菜饼等作为添加材料进行雷竹林地覆盖增温试验.首先对3种材料进行单一添加试验,并根据试验结果对添加材料复配了3个配方进行第二轮的试验,试验结果显示,在基础覆盖层间加入鸡粪(750t/亩)+麦麸(500t/亩)+菜饼(750t/亩)的配方,最有利于雷竹林地增温和保温.
早竹(Phyllostachys praecox f. prevelnalis)(又称雷竹、早园竹),为禾本科竹亚科刚竹属植物,本文是2006-2008年余杭区重点农业科技发展“早竹土壤改良与持续丰产应用研究”课题,以及后续实施中,采集早竹林土壤样方分析的基础上,提出了相应的施肥管理要求和原则.
对毛竹笋材两用林进行了施肥技术的研究,结果表明:同等施肥条件下,中坡、下坡位置对比上坡位置,初次出笋日期、出笋数量、单笋均重、新笋总重、新笋平均地径均无显著差异,而新竹的眉径和枝下高则比较显著.