Simultaneous removal of nitrate and phosphate by sulfur coupled with iron(Ⅱ)carbonate-driven autotro

来源 :NCEC2019第十届全国环境化学大会 | 被引量 : 0次 | 上传用户:wenqin2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  The discharge of nitrogen and phosphorus from wastewater into natural water bodies is the main causes of eutrophication.
其他文献
卤素自由基广泛存在于自然与工程水体中,特别是由于氯消毒在水/废水消毒过程中广泛使用,在紫外光照下大大促进了含氯自由基(RCS)的生成,但是,RCS 水环境行为并不明确。
抗生素残留、环境暴露以及抗生素抗性基因(ARG)蔓延严重威胁着人体健康和环境安全。以高效率、低成本方式消减抗生素影响及有效阻控ARG传播风险,是全球水生态安全保障的重要目标和热点问题之一。
会议
目前铁基芬顿反应存在的最关键科学问题之一就是铁离子循环效率低的问题。为了解决这个问题,往芬顿反应体系中加入抗坏血酸、半胱氨酸等有机还原剂是加快铁离子循环的有效方法,但有机助剂的加入会降低整个体系有机污染物分子的矿化率。
铜离子废水广泛来源于电镀、电子、交通和建筑等工业。同时,在废水中,铜离子经常与诸如EDTA、CN-等络合剂络合。这导致了诸如混凝、吸附、加碱沉淀、生物处理等传统处理工艺对铜络合物的去除能力较差。
近年来,基于硫酸根自由基(SO4·-)的高级氧化方法在水污染防治领域受到了极为广泛的关注。二价铁[Fe(Ⅱ)]活化过硫酸盐(PS)与六价铁[Fe(Ⅵ)]氧化亚硫酸盐(BS)是产生SO4·-的绿色方式。
废水深度处理与水资源高标准再生利用,是解决水资源短缺的重要途径,有机物特别是有毒有害难降解有机物的深度去除,是水再生回用的关键一环。非均相臭氧催化氧化技术,能够利用催化剂催化臭氧分解产生的无选择性强氧化剂(如羟基自由基),实现难降解有机物的强化去除,已逐步得到工程化应用与推广。
化学沉淀法是去除电镀废水中重金属最常用的方法,但普遍存在碱投加量大、污泥产生量大、处理成本高等问题,特别是电镀废水中高价值的重金属如镍、铜等得不到回收,沉淀后和其它污泥混到一起作为危废处理,浪费了资源。
通常的重金属废水处理在本质上是一种污染大转移,由水体转移到渣,易产生二次污染。如何实现重金属废水深度处理耦合资源化是当前的重要挑战。
作为必需的营养物质,磷元素几乎参与了所有的生物化学反应[1]。然而,磷元素从矿物到土壤再到水体的单向流动,造成了磷矿危机和水体富营养化。
Biofilms are self-immobilized systems that exhibit high tolerance to harsh conditions and long-term activity.