【摘 要】
:
The dynamics and bifurcation structure of the normal form in the presence of 0∶1∶2 resonance are studied.
论文部分内容阅读
The dynamics and bifurcation structure of the normal form in the presence of 0∶1∶2 resonance are studied.
其他文献
拉曼光谱技术具有检测方便快捷,高灵敏度,并可以进行无损检测等优点。近年来,其在法庭科学、环境监测、宝石鉴定、文物鉴定、制药工程、食品安全和反恐技术等领域得到广泛应用。表面增强拉曼光谱(SERS)技术较之常规拉曼光谱技术,主要是利用金属纳米粒子的增强效应将其强度提高5-6数量级,克服了常规拉曼光谱仅适用于纯品或是混合物中的主要组分进行分析的缺点,使其能快速便捷地对实际样品中痕量物质进行检测。目前表面
采用不同方法制备HMX/NTO共晶。溶剂挥发法得到的样品,淡黄色NTO团聚呈花球状,与白色的HMX晶体分离,且相间分布。冷却结晶法制备的样品,在偏光学显微镜下,很难看到明显的晶形且得率低。溶剂/非溶剂法制备的样品,通过扫描电镜观察发现,HMX/NTO共晶具有明显的晶形且不同与HMX和NTO,产品粒径均匀,初步判断形成了有效共晶。计算结果表明,HMX/NTO共晶属三斜晶系, P(1)空间群。
Electron transfer(ET)reactions govern many important biochemical processes,including oxygen binding,photosynthesis,respiration,and detoxification.Efficient photo-induced electron transfer(PET)typicall
低维磁性材料是凝聚态物理和材料科学领域的热门话题之一.由于量子效应或自旋阻措效应的存在,具有特殊结构的磁性材料在磁场的应加下,磁化曲线会出现1/3的磁化台阶.目前探索具有磁化台阶的氧化物磁性材料引起人们极大的兴趣.我们在探索低维磁性材料方面积累了许多经验[1,2].最近,我们用水热法合成得到了一个新的化合物BaMn9(VO4)6(OH)2.如图1所示,磁性锰离子具有三个晶体学位置,Mn2和Mn3形
In this paper,we consider existence of solutions to first-order fuzzy delay differential equation with two-point boundary value condition.Firstly,we study a class of linear fuzzy differential equation
Reflection and transmission phenomena of plane waves striking obliquely at the plane interface between two dissimilar thermo-viscoelastic half-spaces with voids have been investigated.Two problems hav
Construction of the Lax pairs of the ordinary difference equations called discrete Painleve equations from those of the partial difference equations called ABS equations via the periodic type reductio
This paper discusses the wavelet-based Finite Difference Time Domain(FDTD)method and a tunable high resolution estimator with a specific problem of sound wave propagation through phononic crystals.If
Last few decades have seen major developments in the theory of differential Painlevé equations.Their solutions,called Painlevé transcendents,are nonlinear special function that are playing an increasi
Symmetry plays a central role in the study of integrable systems.Using the tools from representation theory of affine Weyl groups,we uncover various properties and relations between the different disc