Synthesis of novel Y-AZO composite and photocatalytic activity for hydrogen generation under visible

来源 :第十四届全国太阳能光化学与光催化学术会议 | 被引量 : 0次 | 上传用户:hekaishou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Various methods such as hydrothermal process, sol-gel method and co-precipitation method have been reported for the synthesis of un-doped and doped ZnO nanoparticles (NPs).1 In these approaches, sol-gel is the most effective and facile method to prepare the NPs.2 Based on our research, 3 a novel Y-AZO composite was successfully synthesized by the modified sol-gel method.
其他文献
Dye-sensitized solar cells (DSCs) are promising candidates for low-cost and clean energy conversion devices.However,Pt counter electrode is a burden for large-scale application of DSCs due to its high
会议
光催化中存在一个典型矛盾:宽带隙半导体通常有较高的光催化性能,然而对可见光响应不佳,从而导致在全太阳光谱的利用效率低[1]。能带结构调控可以有效解决这个问题,通过调整宽带隙半导体的电子能带结构,将光响应区域从紫外光拓展到可见光[2]。
BiOBr系光催化材料因其适合的带隙(2.9 eV),化学稳定性好和相对优越的光催化性能而得到广泛的关注[1,2].研究表明,两种不同半导体单晶材料组成的异质结的内建电场能够抑制光致电子和空穴的复合,提高量子效率 [3].如果将BiOBr和能匹配的半导体制备成异质结光催化新材料,则有希望进一步提高其可见光的光催化活.
低浓度含铀U(Ⅵ)废水[铀酰]因其持久稳定存在、危害范围广、处理难度大,应用传统的废水处理方法无法使低浓度铀U(Ⅵ)彻底消除.例如,吸附和蒸发浓缩法,不但不能有效分离铀U(Ⅵ)反而会产生大量含铀U(Ⅵ)的污泥,易造成二次污染,且运行成本较高;化学沉淀法和还原法过程中易产生沉淀物,二次处置难度较大;生物处理法因铀U(Ⅵ)对微生物的毒性高及选择性强而不能达到理想的去除效果.光催化还原技术具有绿色、反应
Titania (titanium dioxide, TiO2) has attracted tremendous attentions as a semiconductor photocatalyst in the past decades due to its superior features including chemical stability, low cost, high reus
Producing hydrogen by using semiconductor material with sunlight may become an alternative to future energy source,[1-4] which is considered low/non-carbon and renewable.Co-doping tin dioxide with cer
以苯乙烯为代表的挥发性有机化合物(VOCs)造成的阴霾天气对动植物的生长及人类健康均会造成极大的危害[1]。如何有效去除这些毒害有机废气和净化大气环境等难题越来越引起科学家们的广泛关注。
本研究以不同電位相位差(180°)之雙電極推拉式電漿激發化學氣相沉積(Push-PullPECVD)法沉積二氧化鈦薄膜(如圖1),利用氬氣(20 sccm)輸送四異丙基鈦酸酯(Ti(OC3H7)4)之蒸氣,以氧氣(20 sccm)當電漿激發氣體產生反應,沉積二氧化鈦觸媒薄膜於不銹鋼及玻璃基板上,主要改變不同電漿電源功率(200~400 W),以提升光觸媒薄膜特性,接著利用高溫退火爐進後續退火處理(
During the past decades, photocatalysts have gained intensive attention with growing concerns of energy and environment problems.1 In particular, visible-light photocatalysts are more attractive in re
Vanadium (V, V) and chromium (Cr, VI) were simultaneously reduced to less-toxic V(VI) and Cr(Ⅲ) by a photocatalytic method with ZnWO4 nanoparticles prepared by hydrothermal synthesis. The reduction ef