【摘 要】
:
To improve cellulosic ethanol yield and develop the cost-effective simultaneous saccharification fermentation for ethanol production,the strain should be developed with improved tolerance to high temp
【机 构】
:
Key Laboratory of Systems Microbial Biotechnology,Tianjin Institute of Industrial Biotechnology,Chin
【出 处】
:
第七届中国工业生物技术发展高峰论坛
论文部分内容阅读
To improve cellulosic ethanol yield and develop the cost-effective simultaneous saccharification fermentation for ethanol production,the strain should be developed with improved tolerance to high temperature and inhibitory compounds from lignocellusic biomass.Here,an industrial strain of S.cerevisiae Ethanol Red E491 (Ethanol Performance Group,NJ,USA) was evolved using corn cob hydrolyzate at stepincreased temperature (from 37-45℃) and the resulting daughter strain,TIB-S.C Y45,produced ethanol much more rapidly than its parent in fermentations of corn cob hydrolyzate at 40℃-45℃.Adaptation improved fermentation performance of the evolved strain.Based on differential integrative omic analysis,we find evidence of parallel evolution in many genes.Consistent with the complex,multigenic nature of multiplestresses,we observe adaptations in a diversity of cellular processes.Many adaptations appear to involve epistasis between different mutations,implying a rugged fitness landscape for the tolerance of high temperature and inhibitory compounds in yeast.
其他文献
Glycerol dehydrogenases are key enzymes in the pathway of glycerol metabolism.They dehydrogenate the glycerol to dihydroxyacetone (DHA) for the production of value-added products,namely,DHA,butanol,su
现代生物科学与技术的不断突破和发展,使得在分子水平上研究生命现象和生物活动规律成为了可能。特别是基于高通量测序转录组学、碳13标记的流量组学以及工业微生物遗传与进化改造技术的发展突飞猛进学科间的交叉、渗透和融合的趋势也日趋增强。各种学科的交叉融合为能源微藻的系统研究和改造打开了一个全新视角。有效地整合基因组数据和流量组数据将使我们对能源微藻光合固碳与油脂积累的调控机制会有更加深入;开发新一代的微藻
通过改造的鸟枪法从耐盐嗜碱菌Bacillus sp.BG-CS10中克隆到一个新的纤维素酶基因,该基因包含一个纤维素酶结构域和一个未知功能结构域DUF291.异源表达和表征分析发现,2.5M NaCl能使该纤维素酶的活性提高10倍,使酶的最适温度提高20℃.这些明显不同于已报道的其他纤维素酶.在对蛋白进行纯化结晶的分析中发现,达到SDS-PAGE检测纯度的蛋白在没有NaCl存在时,动态光散射(DL
Recently,several new prenyltransferases structures that contain a triose phosphate isomerase (TIM)barrel fold have been discovered,and there is considerable interest in their mechanisms of action.We r
R-3- 二甲胺基-1-苯丙醇是合成托莫西汀,氟西汀等西汀类抗抑郁药物的重要中间体.目前该手性胺基醇主要是通过有机不对称催化合成,需要使用重金属及手性配体,增加了生产成本,限制了其工业化应用.目前尚无使用羰基还原酶催化该β-胺基酮底物的相关报道.来源于Sporobolomyces salmonicolor 的羰基还原酶SSCR具有广泛的底物谱,能够还原脂肪酮,芳香酮,α,β-酮酯和具有较大空间位阻
果胶是植物细胞壁的重要组成成分,包括原果胶、果胶酸和果胶酯酸.果胶物质的存在可增加植物细胞壁的坚硬度,有利于维持植物的特定外形结构,但也增加了对植物进行深加工的工业操作的难度.碱性果胶酶(EC:4.2.2.2)是一类在碱性条件下,以反式消去作用裂解果胶质主链,产生不饱和的寡聚半乳糖醛酸的酶,在纺织工业的麻类脱胶、棉织品精炼等领域内有着广泛应用.相比于传统的高碱高温处理手段,使用碱性果胶酶不仅对果胶
随着全球气候变化,二氧化碳温室气体的排放量不断增加以及化石燃料的逐渐枯竭等全球重大资源与环境问题的日趋突出,发展可再生生物能源已经引起了世界许多国家的普遍关注。与陆生高等油料作物相比,微藻能源因其产量和含油量高,可工业化培养等许多优势,被认为是未来最有前景的生物能源途径之一。与传统能源作物积累单一油脂不同,微藻生长过程中能大量积累积油脂的同时,还能生产一定量的蛋白质和碳水化合物等,因此可望转化成多
Rhamnolipids have the potential to play the important role in enhanced oil recovery (EOR) as the substitutes of chemical surfactants,and mainly produced from Pseudomonas aeruginosa that is pathogenic
γ-聚谷氨酸(γ-PGA)因其强水溶性、生物相容性、可降解性、无毒等特点,可以作为一种环境友好型高分子材料在工业领域广泛应用.目前,γ-PGA合成酶作用机制的研究主要集中于枯草芽孢杆菌,对于地衣芽孢杆菌鲜有报道.本文从一种新型γ-PGA产生菌—地衣芽孢杆菌CGMCC2876中克隆出γ-PGA合成酶基因—pgsBCA,分析表明该基因由3个开放阅读框架组成,大小为2974bp,且与地衣芽孢杆菌WBL-
The filamentus fungus Neurospora crassa possess strong ability of lignocellulosic biomass degradation in nature,and thus it has been used as a suitable model for studying gene transcriptional regulato