通过扩散工艺自动选择维持方阻稳定

来源 :SNEC 第九届(2015)国际太阳能产业及光伏工程(上海)论坛 | 被引量 : 0次 | 上传用户:hmglz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  在常规多晶扩散生产中,大多使用瓶装三氯氧磷间歇生产。随着生产的进行,三氯氧磷逐渐消耗,源瓶内液面下降,造成瓶内三氯氧磷饱和蒸汽压逐渐下降。在保持通八氮气总量不变情况下,气体携带的三氯氧磷分子逐渐减少,导致扩散后方阻变大,均匀性变差。
其他文献
该文公布了自2006年以来,在广州中山大学太阳能系统研究所安装的6种组件系统的发电量及性能.该文涉及的组件技术包括单晶硅、多晶硅、非晶硅、铜铟镓硒、碲化镉和HIT,这些组件均以统一倾角和朝向安装,为广州地区最佳安装角度.通过长期监测发现薄膜组件发电量高于晶体硅组件,而且单晶硅组件的发电优势随着时间推移而降低,2013年全年发电量为707kwh/kWp,与此同时多晶硅组件年发电量为825 kwh/k
会议
Achieving the highest efficiency for c-Si based photovoltaics will require improved light management as substrates thin and surface passivation improves.Nanophotonic structures, structures smaller tha
会议
Electrically conductive adhesive (ECA) materials have been widely used in electronics because of their low curing temperatures resulting in low thermal stresses and their ROHS-compliance.In PV,solder
会议
衬底温度对非晶硅薄膜的生长以及异质结电池中晶体硅表面钝化起到至关重要的作用。实验中采用等离子体增强化学气相沉积技术,在晶体硅表面双面沉积本征氢化非晶硅薄膜,采用等离体增强化学气相沉积技术制备了具有不同微结构、异质结界面形貌等特征的氢化非晶硅薄膜。
会议
During the production of photovoltaic (PV) Si solar panels, a high level of residual stress in Si crystals often remains undetected far into the fabrication process, until ultimately the end product (
会议
Today photovoltaic module manufacturers have a wide choice of different types of back sheets available to them, each exhibiting a specific combination of performance attributes.The latter depend on th
会议
Potential-induced-degradation (PID) is one of the major technical challenges to the current PV industry, but the community still lacks a fundamental understanding of this phenomenon.In this study we p
会议
在国家大力发展新能源,支持光伏发电的政策引导下,光伏电站行业的门口站立了非常多的投资者.对于标的电站,投资者需要从财务、法务、技术等方面全面了解该电站的情况,因光伏电站的尽职调查服务也就应运而生.目前存在大量电站得到核准后、建设过程中或者完工需要资金注入,对于潜在的投资者,如何去合理评估此类电站在此前一直是空白.TUV NORD凭借海内外电站方面丰富的评估经验,为国内的投资者定制了一条两步走的技术
会议
PID(Potential Induced Degradation,压致衰退)现象成为影响光伏地面电站实际发电量不容忽视的问题。本文就如何在光伏电站层面安全有效解决PID问题而提出一种设计方案,其主要通过在光伏电站负极端串联熔断保护电路和电流传感器接地的方式实现负极接地,同时阐明该设计方案的优缺点。
会议
温度对晶硅太阳电池组件有着重要的影响.太阳电池组件温度较高时,工作效率下降.随着太阳能电池温度的增加,开路电压减小,在20 ~ 100℃范围,大约每升高1℃每片电池的电压减小2mV;而光电流随温度的增加略有上升,大约每升高1℃每片电池的光电流增加千分之一,或0.03mA/℃·cm2.
会议