磁性纳米材料及多模态影像指导下的靶向磁感应热疗

来源 :第十六届全国磁学和磁性材料会议暨第十七届全国微波磁学会议 | 被引量 : 0次 | 上传用户:ggyy2000_2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
磁性纳米氧化铁作为MRI造影剂和磁感应加热剂已经应用于临床诊断和热疗,但是后者仍然局限于瘤区局部介入给药,因此如何实现通过静脉给药并高效主动靶向到肿瘤组织,是未来热疗领域的迫切需求,也是目前国际热疗研究的前沿和挑战.
其他文献
磁感应断层成像(Magnetic induction tomography,MIT)是电阻抗成像一个重要分支,具有时间敏感性、不接触、无创、适于连续图像监测等优点[1].图像重建算法是MIT 研究中的核心问题之一.当应用MIT 进行连续图像监测时,可以得到依时间先后顺序的多个测量数据,这种方式有别于传统的单次测量或两次差分测量,相应的图像重建算法所利用的测量数据也有了更多的选择,既可以类似于传统方
会议
近年来一些实验证据表明稳态磁场能够抑制一些肿瘤细胞的生长,并有临床研究开始将磁场应用于肿瘤等的辅助治疗中.然而目前大多数研究缺乏系统性和深入性,导致磁场对肿瘤细胞的生物学效应并不明确,机制并不清楚.总的来讲,引起各种差异的主要原因是磁场的性质、强度以及作用时间的不同,以及各研究中所用的实验体系,例如细胞来源的不同.
会议
口腔医学的研究领域涵盖了对口腔内牙、骨、软组织的治疗,以及对包括复合树脂、金属、陶瓷等在内的修复材料的研究.由于口腔环境狭小、组织结构细微,因此,传统器械通常难以达到远端的细微结构.而临床使用的材料表面处理方法则须具有安全、温和、高效等特点.近年来,随着大气压气体放电等离子体科学与技术的发展及其与基础医学和临床应用的不断交叉融合,等离子体医学获得了长足的发展.限于篇幅,本论文主要综述大气压气体放电
会议
肺癌是世界上死亡率较高的恶性肿瘤,严重威胁人类的健康,目前其治疗方法以化疗为主,但存在许多副作用.因此,寻找理想的肿瘤治疗方法迫切需要.我们及一些学者前期报道低频电磁场具有较广泛的生物学效应和抗肿瘤作用[1];肺癌的分子病理进程涉及多种微小 RNA(miRNAs)的异常表达.但关于低频磁场暴露治疗肿瘤的机制不详.
会议
大气压气体放电冷等离子体射流源由于其放电均匀柔和、气体温度低、化学活性粒子种类丰富且浓度较高等显著特点,近几年来在生物医学领域显示出了独特的优势,将有望在临床上用于伤口消毒止血、肿瘤治疗、创伤愈合、医学美容等.本文采用强度合适的大气压介质阻挡放电氦等离子体射流源对难愈合创面进行处理,为此建立了C57 糖尿病小鼠模型,并在小鼠背部建立了1 cm 直径的全层皮肤切割伤.
会议
磁场生物效应是当前生物医学工程学界的研究热点.磁场对人类自身的影响与健康效应己引起人们的普遍关注,涉及对中枢神经系统、血液和免疫系统、血管与内分泌系统等效应的研究,其中最引人注目的是低频磁场暴露在肿瘤治疗方面的应用 [1].我们前期发现低频磁场能够明显抑制肝癌、肺癌和黑色素瘤细胞的增殖和干扰细胞周期,提高小鼠的存活率,并且通过调节细胞因子的分泌和免疫系统来发挥其抑瘤作用[2],但低频磁场暴露治疗肿
会议
近年来,由于电子器件小型化、轻量化、集成化的需求,基于柔性衬底的磁性薄膜高频电子器件因其潜在的应用价值成为研究热点.柔性褶皱结构的磁性薄膜具有不同于平整刚性结构磁性薄膜的磁性,如具有明显的磁各向异性,并且可以通过薄膜厚度、衬底应变、倾斜角度等来调控薄膜的表面形貌进而调控薄膜的磁各向异性.
会议
以高自旋极化率的 Heusler 合金Co2MnSi 作为铁磁层可实现大的磁电阻效应,从而被认为是磁随机存储器(MRAM)自旋电子器件极具潜力的候选铁磁层材料之一[1].另外,研究发现具有垂直磁各向异性(PMA)的铁磁层比面内磁各向异性的更具有优势,比如可实现更小的磁化翻转电流,具有良好的热稳定性等[2].因此,设计以Co2MnSi 作为铁磁层的膜层结构,探究该薄膜结构的PMA,对于自旋电子学器件
会议
当今大数据时代,数据的高效存储面临严峻挑战.当前的存储器件大多以磁性材料作为存储介质.相比于传统的磁场写入存储方式,电场写入的信息存储模式具有高速度与低功耗的优势,已经成为新一代磁信息存储技术的发展趋势.目前人们利用电场作用下的场效应、极化翻转、逆压电效应等过程与磁性的耦合作用,在一些磁性材料,如稀磁半导体、超薄铁磁金属薄膜以及多铁材料(包括单相多铁与复合多铁材料)等体系中实现了电场对磁性相关参数
电荷有序是锰氧化物中的重要现象1.当体系的库仑排斥能强于材料的单电子带宽时,材料通常表现出电荷有序现象,这种产生电荷有序态的机制被称为带宽调节机制.当材料受到诸如磁场和电场等外界刺激时,电子的动能增加,此时电荷有序态会受到破坏而转变成铁磁金属态;该转变常常引起庞磁电阻效应和庞电致电阻效应的发生.
会议