论文部分内容阅读
多光谱遥感图像反映了不同地物的光谱特征,其分类是遥感应用的基础。独立分量分析算法利用了信号的高阶统计信息,对于多光谱遥感图像而言,算法去除了波段图像之间的相关性,获得的波段图像是相互独立的。但是独立分量分析算法有一个缺点,即计算量太大,影响了在多光谱遥感图像分类上的应用。M-FastICA算法可以改善FastICA算法的性能,但是同FastICA算法一样,它们的收敛依赖于初始权值的选择。通过在M-FastICA算法中引入松弛因子,使算法可以实现大范围收敛,得到更稳定的收敛效果。应用BP神经网络对独立分量分析算法预处理后的图像进行自动分类,其分类精度较原始遥感图像的精度均高,并且三种独立分量分析算法的分类性能也相当。