【摘 要】
:
自从Poizot教授课题组首次报道了过渡金属氧化物作为锂离子电池负极材料以来,过渡金属化合物TMX(X为F、O、S、N、P)就收到广大研究人员的广泛关注。在过渡金属化合物中,锰基氧化物种类众多,具有多种晶体结构和多种价态,而且其电化学性能取决于其氧化态、纳米结构和形貌。
【机 构】
:
贵州大学材料与冶金学院,贵州省贵阳市,550025 清华大学核能与新能源技术研究院,北京市,100
论文部分内容阅读
自从Poizot教授课题组首次报道了过渡金属氧化物作为锂离子电池负极材料以来,过渡金属化合物TMX(X为F、O、S、N、P)就收到广大研究人员的广泛关注。在过渡金属化合物中,锰基氧化物种类众多,具有多种晶体结构和多种价态,而且其电化学性能取决于其氧化态、纳米结构和形貌。
其他文献
本文利用氢键层层组装方法,将中性聚合物—聚乙烯咔唑(PVK)和中性磷光小分子—铱金属配合物(Ir(F2ppy)3)与层状复合金属氢氧化物(LDHs)纳米片组装成超分子复合薄膜。通过对复合薄膜的结构、荧光性质等的表征结果说明,作为供体和受体的 PVK 和 Ir(F2ppy)3分子在 LDHs 层间实现了有效的二维能量转移过程(FRET),薄膜的发光效率和磷光寿命得到了大大的提高。并且,基于挥发性有机
草酸是稀土金属提取过程中重要的沉淀剂,本文用硝酸氧化葡萄糖制取草酸.以原糖为原料,通过硫酸的水解,硝酸的氧化制得粗品草酸,再通过重结晶提纯草酸,母液用磷酸三丁酯萃取再生硫酸,处理后循环利用与生产.研究结果:硫酸水解的物料比(原糖/硫酸为1∶1,10mol/LH+的硫酸),温度70-80℃,时间4h;硝酸氧化的物料比(原糖/硝酸为 1∶2.8),温度70℃左右,时间4h,V2O5做催化剂;粗品草酸重
本文合成了一种新型硫脲分子,并对化合物进行结构表征.该分子的分子式是C14H11N5O5S,属于P2(1)/c 空间群,a=6.2702(9)nm,b=8.0756(12)nm,c=15.500(2)nm,α=γ=90.00°,β= 96.293(3)°,V =780.1(2),Dc=1.538g·cm-3,μ=0.246cm-1,F(000)=372,Z=2,R1=0.0472,wR2=0.12
当前,碱性聚合物电解质膜的稳定性成为限制碱性聚合物电解质膜燃料电池发展的关键因素,尤其是官能团的稳定性远不能满足电池需求.研究表明,季铵盐在高浓度碱中受OH-攻击发生降解.目前,咪唑基团(尤其是2-位取代咪唑)作为可替代季铵盐的官能团成为研究的热点.然而咪唑型官能团的稳定性到底如何?它能否适应碱性聚合物电解质燃料电池的化学环境?本研究工作为了对比验证季铵盐与2-甲基咪唑盐在碱中的稳定性,将合成的单
锂离子电池目前广泛应用于便携式电子设备,移动通讯等领域中[1]。目前商业锂离子电池负极材料石墨由于其理论比容量低(372 mA h/g),从而不能满足人们的生活需求。因此,设计和开发一种高比容量锂离子负极材料是当前所亟需。
铁镍二次电池的充电效率低和高倍率性能差,一直以来严重制约其快速发展[1]。近年来,本课题组在新型铁镍二次电池负极材料的研究方面取得了一定进展[2]。研究发现,FeS直接用作负极材料时表现优异的倍率性能和循环性能。
采用乳液聚合方法制备了以甲基丙烯酸甲酯-苯乙烯-甲基丙烯酸环氧丙酯共聚物为壳,以聚丁二烯为核的反应性核壳粒子(PB-g-MSG),将其用于聚对苯二甲酸丁二醇酯/聚碳酸酯(PBT/PC)的增韧改性。设计核壳粒子的核壳比、交联度与接枝度、壳层构成,优化其对PBT/PC共混物的增韧效果。
目前,设计和发展高效的、低成本的双功能氧电极已成为能源转化和储存技术(如燃料电池,金属-空气电池和水裂解)的迫切需要。为了满足这一需要,我们通过简单两步法构筑了一个新的、经济有效的花状Ni和N共掺杂分级多空碳微球电极(表示为F-Ni/N-HPCMs)。
本文研究了间隔基含羟基基团的Gemini表面活性剂12-3OH-12在质子化离子液体硝酸乙基铵(EAN)中聚集行为。表面张力的结果表明,随着羟基的引入,12-3OH-12的临界胶束浓度低于不含羟基的同系分子12-3-12,且12-3OH-12在气/液界面排列更加紧密,这可能源于12-3OH-12与EAN间的氢键作用。
锂离子电池作为一种绿色环保电源被广泛应用于各种便携式电子器件和纯电动/混合动力交通工具中[1]。目前应用最广泛的锂离子电池是用石墨作为负极材料,但是由于石墨的理论比容量较低(372 mAh g-1),很难满足现代化人们对高能密度锂离子电池的需要,严重的阻碍了人类社会的快速发展。