【摘 要】
:
[引言]固体氧化物燃料电池(SOFC)作为一种有很好应用前景的绿色能源转换装置吸引了科研工作者的广泛注意.这主要是因为大多数碳氢燃料都能灵活适用于固体氧化物燃料电池且转化效率高,污染物排放少,另外无需贵重金属作为电极催化剂[1-3].
【机 构】
:
上海交通大学电化学与能源技术研究所,上海,200240 上海交通大学电化学与能源技术研究所,上海,
【出 处】
:
第17届全国固态离子学学术会议暨新型能源材料与技术国际研讨会
论文部分内容阅读
[引言]固体氧化物燃料电池(SOFC)作为一种有很好应用前景的绿色能源转换装置吸引了科研工作者的广泛注意.这主要是因为大多数碳氢燃料都能灵活适用于固体氧化物燃料电池且转化效率高,污染物排放少,另外无需贵重金属作为电极催化剂[1-3].
其他文献
固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)是将化学能直接转化成电能的全固态化学发电装置,是一种具有高能量转化率,低噪声少污染的清洁高效的能源系统.与燃烧发电技术相比,SOFC极大地降低了化石燃料在热电转换中的能量损失和对生态环境的影响.
[引言]固体氧化物燃料电池(SOFCs)是一种全固态能量转化装置,具有转化效率高,燃料适应性强,环境友好等特点[1].传统的阳极材料Ni/YSZ对纯氢具有良好的催化性能,但在用于碳氢燃料时会产生碳沉积和硫中毒现象,进而影响电极的催化特性.
[引言]CO2是造成"温室效应"的主要气体,随着全球经济的蓬勃发展,对能源的需求与日俱增,化石燃料的大量使用导致大气中的CO2含量也不断增加.CO2的排放、回收和转化问题已经引起了世界各国的普遍关注.
由于Y2O3稳定的ZrO2 (YSZ)电解质材料操作温度(1000℃)过高,提高了材料的成本并且降低了电池的稳定性.因而,开发中低温固体氧化物电池电解质材料成为固体氧化物燃料电池的研究热点.
作为固体氧化物燃料电池的电解质,对致密化程度要求较高(≧5%).采用共沉淀方法合成的Bi2O3-Gd2O3双掺杂的氧化铈基材料它在1300℃即达到电解质材料的致密化要求,而烧结温度明显低于Gd2O3单掺杂的材料.
采用自蔓延燃烧法分别合成了Ti掺杂的SrCoO3阴极粉体Sr0.95Ti0.05Co0.95O3-δ(STC)以及Sm0.2Ce0.8O1.9(SDC)电解质粉体,并球磨混合得到复合阴极粉体.利用X射线衍射仪(XRD)研究材料物相组成,扫描电子显微镜(SEM)观察电池的断面微结构,电子负载记录电池的输出性能,交流阻抗谱表征电池的界面极化行为..
前言: In recent years, continuous efforts were paid in reducing the operation temperature of solid oxide fuel cells (SOFCs) into an intermediate range of 500-800 ℃ [1,2].
固体氧化物燃料电池(SOFC)是将化学能转化为电能的一种新型的、洁净的发电装置.目前,中低温化是固体氧化物燃料电池的发展趋势之一,较高的操作温度对电池的各个部件都提出了非常苛刻的要求,能否成功将工作温度降低至500~800℃是商业化的关键.
[引言]银网是常用的阴极电流收集材料,在SOFC的操作温度下长时间运行会发生损耗,从而造成电池性能衰减,另外贵金属材料价格昂贵不利于SOFC的商业化.流延法具有工艺简单、成本低廉等优势,是制备大面积且厚度可控的薄陶瓷材料的重要工艺方法,对平板型中温SOFC集流体规模化生产有着广阔的市场.
[引言]无机填料改性方法操作简单、方便,并且改性效果好,不仅能改善电解质的电化学性能,并且能提高电解质的机械性能,是目前研究最广泛的改性方法.