超冷环境下的辣根过氧化物酶活性

来源 :2016全国生命分析化学学术大会 | 被引量 : 0次 | 上传用户:jaeiris
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  When the temperature of organisms dropping to below zero Celsius,extracellular crystals form and the high concentration of electrolyte outside the cell will result in the removal of water from the cell,which is a lethal factor for cell.To our surprise,the organism can still alive under extreme condition.
其他文献
纳米通道以及纳米孔在离子传输的控制及整流方面显示独特的优势[1],如何更好的理解与应用离子在纳米通道中传输机制,对于纳米通道传感与整流器件的设计与应用具有重大的意义[2]。因此,我们通过理论与实验研究了纳流控二极管的串联整流机制,考虑离子在纳米通道中传输的控制因素,在控制通道中场强分布一致的前提下,分别考察了串联级数,纳米通道结构与表面静电分布[3]对离子串联整流效应的影响。研究表明:通道结构变化
目前,纳米材料广泛应用于工业催化、工业添加剂、废水处理和个人护理产品等领域,导致大量的纳米颗粒物进入环境生态系统中。纳米颗粒物很容易与周围环境中大量存在的天然有机物(Nature organic matters,NOMs)结合,影响纳米颗粒在生态环境中的行为。一方面,天然有机物包埋后的纳米颗粒的稳定性不同于纳米颗粒本身,从而影响纳米颗粒在环境中的迁徙速度和途径以及它们在环境中的分布;另一方面,纳米
基于可控的自组装,将纳米尺度的结构单元设计成为有活性的纳米结构功能材料是一项巨大的技术挑战。光子晶体是两种以上折光指数不同的材料在空间按照一定的周期顺序排列所形成的有序结构功能材料。其结构单元处于可见光波长范围,存在光学禁带,可以调制光的传播,是一种新兴的纳米结构功能材料。通过自组装刺激响应性胶体颗粒构建光子晶体是一种能将光子晶体结构与刺激响应性材料结合的简单廉价且有效的方法。本研究选择丙烯酸(A
Mimicking normal insulin secretion to maintain the blood glucose level in the normal range is the idealist treatment for diabetes[1].Insulin(INS),with short half-life in systemic circulation,required
会议
卟啉是一类大环的天然化合物,它与金属离子的螯合过程在血红素蛋白、维生素B12及叶绿素等的形成中起着重要的作用。卟啉具有极强的摩尔吸光度,在分析化学中也吸引着人们的广泛关注。
Photonic crystals(PCs),known as the materials with periodic structure which can control and manipulate the flow of light.While responsive photonic crystals(RPCs)are a kind of photonic crystals with pr
一种由EDTA固定的类石墨烯氮化碳纳米片(EDTA-CN-NS)选择性测定超灵敏Pb(Ⅱ)的伏安传感器,意旨于提高电极表面铅离子的富集性能.EDTA-CN-NS是通过K2S2O8的预氧化和EDTA硅烷化试剂制备的.晶体结构,表面形貌和增加的官能团由XRD,SAED,TEM,STEM mapping 和FT-IR所表征,并与由被固定的EDTA所提高的对铅离子的富集能力所引发的电催化效应所一致.
光电化学分析是基于光电化学过程和化学/生物识别过程建立起来的一种新的分析方法。该方法以光作为激发信号,以光电流作为检测信号,具有灵敏度高、响应快速、设备简单和易微型化等优点,在生物和环境等分析领域受到了广泛关注。本课题组基于有机染料光敏剂卟啉功能化的g-C3N4 半导体纳米材料,构建了一种简单、快速、灵敏的光电检测手段,并结合量化计算方法研究了有机染料分子的前线分子轨道能级与无机半导体纳米材料的导
相比单个ECL活性分子,通过将大量ECL活性分子封装进一个纳米粒子当中可以大大提高ECL信号。通过耦合单个靶结合位点,这种掺杂型纳米结构在超灵敏生物分子中具有应用潜力[1-5]。本工作构建了一种新的ECL纳米结构,它以共轭聚合物作为基质同时也作为给体,疏水性Ru(bpy)32+衍生物作为受体分子发射ECL,PSMA作为羧基功能化试剂,通过纳米沉淀法一步合成羧基功能化的掺杂Ru(bpy)32+的共轭