【摘 要】
:
Anelastic materials exhibit gradual full recovery of deformation once a load is removed,leading to dissipation of internal mechanical energy.At the macroscopic scale, however,anelasticity is usually v
论文部分内容阅读
Anelastic materials exhibit gradual full recovery of deformation once a load is removed,leading to dissipation of internal mechanical energy.At the macroscopic scale, however,anelasticity is usually very small or negligible, especially in single-crystalline materials [1].Here,we show that single-crystalline ZnO and p-doped Si nanowires can exhibit anelastic behavior that is up to four orders of magnitude larger than the largest anelasticity observed in bulk materials,with a timescale on the order of minutes.In situ scanning electron microscope tests of individual nanowires showed that, on removal of the bending load and instantaneous recovery of the elastic strain, a substantial portion of the total strain gradually recovers with time.We attribute this large anelasticity to stress-gradient-induced migration of point defects, as supported by electron energy loss spectroscopy measurements and also by the fact that no anelastic behavior could be observed under tension.We model this behavior through a theoretical framework by point defect diffusion under a high strain gradient and short diffusion distance, expanding the classic Gorsky theory.We show that ZnO single-crystalline nanowires exhibit a high damping merit index, suggesting that crystalline nanowires with point defects are promising materials for energy damping applications [2].
其他文献
Mechanical exfoliation is an approach widely applied to prepare high-quality two-dimensional (2D) materials for investigating their intrinsic physical properties.Here,we systematically investigate the
鼓泡法是一种简单有效的测试薄膜力学性能的方法,目前已成功用于测量二维纳米材料的弹性模量、界面吸附和界面剪切性能。以往的鼓泡分析模型通常是基于Hencky解建立的,由于Hencky解采用了周边夹紧条件而抑制了石墨烯片的径向滑移,因此给出的鼓泡高度偏低且无法给出鼓泡之外区域的应力、应变分布。为此,本文舍弃周边夹紧条件,利用拉梅解推导了修正的Hencky解,该修正解能够更准确地描述鼓泡形貌,而且能够解析
至今,微米级尺度的结构超滑现象绝大部分发生在原位本征剪切的石墨滑块界面或因对界面的洁净程度的苛刻要求发生在真空中组装形成的摩擦副界面之间,这些条件都大大限制了结构超滑应用的发展。因而在此,我们报道发现了在大气条件下组装的一对石墨滑片界面也能观察到结构超滑的现象,即使在组装过程中两者界面之间会不可避免地吸附上空气中的污染物。对于此摩擦界面,我们观察到一种独特的磨合现象,在此磨合过程中摩擦力会随滑移界
低维材料在带来巨大科技革新和经济效益的同时,其安全性评价也日益引起人们的重视。探索低维纳米材料与生物细胞的作用机制并评估其生物毒性,扬长避短设计制造生物友好或抗菌抗病毒的纳米药物,成为生物力学、生物物理和生物医药等领域前沿的研究方向,对于纳米材料的生物医学应用和生物安全管理具有重要的意义。本研究利用粗粒化分子动力学(CGMD)方法关注了低维材料的几何形状、刚度及其表面亲疏水性质对其穿透细胞膜行为和
Black phosphorene (BP) has shown anisotropic electronic, mechanical, and thermal properties for various promising applications in recent years.To take full advantage of this unique anisotropy in its f
二维材料的力学性能通常通过悬空压痕测试获得。在悬空压痕实验中,需要把二维材料转移到带有柱形孔基底的表面,然后通过原子力纤维镜下压悬空的材料中心部分,记录针尖的压入载荷和压入位移关系,再利用传统悬空压痕模型拟合实验结果获得材料的力学性能。由于二维材料只有纳米级厚度,通常都有小部分二维材料粘贴在基底孔的侧壁上,从而形成一种较为复杂的粘附边界条件,而非理想的固支边界条件;另外,压针和二维材料之间的范德华
最近几年实验上可以很好地将不同的过渡金属硫族化合物生长在一起,形成具有丰富物理和力学性能的面内异质结构(例如MoS2-WSe2)。分子动力学模拟可以用于研究这类材料的许多力学性能,其中原子间的相互作用模型是分子动力学模拟的基础。已有的相互作用模型只能描写单独的过渡金属硫族化合物,但是不能描写面内异质结构在界面上的交叉相互作用。我们将Stillinger-Weber模型推广到了面内异质结构中,该模型
镁等HCP金属拥有优良的力学性能在航空航天等领域具有广泛的应用,它在冲击载荷下往往经历较大的塑性变形,在微观上存在多种滑移(甚至孪晶)的产生[1]。本文发展了一种针对HCP金属在高压载荷下的晶体塑性模型,以微观的滑移变形机制为基础,对材料的塑性变形进行描述。材料在高压载荷下的体积变化是不可忽略的,在本构关系中分别引入状态方程和晶体塑性模型用于描述材料的容变律和畸变率,进而得到冲击载荷下材料的速度和
The nucleation, growth and perfection of two-dimensional materials such as graphene have recently driven notable research interests not only because of the demand of large-area,high-quality crystals f
本为了提高延性金属材料层裂断裂行为的认知,开展了衰减冲击波加载下单晶铜层裂的大规模原子模拟.采用空间分层方法建立了不同速度、不同脉冲宽度冲击波传播时空特征的三维图谱;采用位错识别算法分析了位错类别、演化规律与冲击波强度、脉冲宽度的联系;揭示了剪应力弛豫导致大量堆垛层错形成、层错交割孔洞产生、增长、聚合、贯通至层裂断裂机理;最后采用自由面回跳速度计算了单晶铜层裂强度.模拟结果表明,当up=0.8km