手性叔胺硫脲催化的吲哚并噻喃类衍生物的不对称合成

来源 :中国化学会第七届全国分子手性学术研讨会 | 被引量 : 0次 | 上传用户:DSFDSAF
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  有机硫化合物在具有生物活性分子和药物中具有重要的地位1.其中,噻喃及并噻喃类衍生物由于其结构单元在药物中广泛存在,引起了大家的极大关注2.然而,到目前为止,通过不对称催化的手段来构建这些含硫杂环化合物的报道仍然十分稀少.鉴于有机催化的低毒、价廉、反应条件温和等优点3,我们开发出了在手性叔胺硫脲的催化下,通过硫代吲哚酮与苄烯丙二腈4、不饱和磺酰亚胺5 等亲电试剂的Michael 加成启动的[3+3]串联环化,实现手性吲哚并噻喃类衍生物的高效不对称合成.
其他文献
Let X be a Fano threefold and (C)*×X→ X an algebraic action. Then X has a S1-invariant K(a)hler structure and the corresponding S1-action admits an equivarian
会议
We introduce the class of toric (2n, k)-manifolds, which are special class of closed, smooth manifolds M2n equipped with a smooth effective action of the compac
会议
We compute the (rational) Betti number of real toric varieties associated to Weyl groups of regular types.
会议
In this talk, I will describe a necessary and sufficient condition that when a real moment-angle complex (RMAC) is a topological manifold, which is based on M.
会议
The talk is based on the joint work with Victor Buchstaber.Toric topology associates to each simple n-polytope P with facets F1,..., Fm an (m + n)- dimensional
会议
The rational homotopy type of a topological space is contained in its model which is a commuta- tive differential graded algebra.
会议
A classical question by Steenrod (late 1940s) was whether it is possible to realize an integral homology class of a topological space by a continuous image of t
会议
In Riemannian geometry, a classical and main theme is to understand the geometry and topology of manifolds with definite curvature sign.
会议
Toric origami manifolds, introduced by A. Canas da Silva, V. Guillemin and A. R. Pires, are generalization of toric symplectic manifolds.
会议
  基于稠环合成方法的发展以及以呋喃环为底物的Diels-Alder 加成反应的研究,对氧杂双环烯烃的开环反应研究取得到了实验研究的广泛兴趣.近几年来,以氧杂双环模板为起始原