【摘 要】
:
This paper is concerned with the intermittent pinning control problem for exponential synchronization of memristor-based neural networks with time-varying delays.By applying nonperiodic intermittent c
【机 构】
:
Faculty os Science,Jiangsu University,Zhenjiang 212013,China
论文部分内容阅读
This paper is concerned with the intermittent pinning control problem for exponential synchronization of memristor-based neural networks with time-varying delays.By applying nonperiodic intermittent control to partial nodes of the delayed memristor-based neural networks,some new general criteria for globally exponential synchronization are derived based on the theories of differential inclusions and nonsmooth analysis.
其他文献
Based on Hindmarsh-Rose neuron,a 4-D neuron model is addressed.Various discharge modes of the proposed neuron model are investigated with the change of external disturbance.The diversity of electric a
位置细胞是大脑空间表示系统的重要组成单元。对位置细胞的研究已经积累了大量的实验数据和经典的模型[1]。然而,当前有一个重要的问题还没有得到充分的探究,即位置细胞是如何表达实际的三维空间的[2]。本研究采用能量编码的方法对该问题做出了初步探讨。能量编码的观点认为神经信息可以由神经能量来表达,而由于能量的全局性和线性可加性特征,采用能量的方法进行神经建模有着明显的优势[3]。
Behavioral learning is mediated by cellular plasticity such as changes in the strength of synapsesat specific sites in neural circuits.The cerebellum,through its critical role in learning of motorskil
PURPOSE: Human and nonhuman primates are capable of recognizing the motion of biological entities in complex visual scenes,even when it is depicted with a handful of point-lights attached to the head
The aim of a brain-computer interface(BCI)is to provide a communication channel for patients who have lost normal communication abilities due to severe motor impairments.Many studies of ECUST BCI lab
随着交通运输业的发展,交通事故已成为当前各国所面临的严重问题。其中,疲劳驾驶是导致交通事故的一个重要因素。针对驾驶疲劳检测方法的研究提出了两种基于大脑连通性的方法。第一种方法是利用区域间/区域内的相位同步和功能单元(functional units,FUs)来研究脑电相位是否从警戒状态变化到疲劳状态。采用平均相位相干性(mean phase coherence,MPC)作为相位同步的衡量指标,从空
脑-机接口(brain-computer interfaces,BCI)是旨在于人类大脑与外界环境之间建立起一条直接的信息交流通路[1],是新一代人机交互和人机混合智能的关键核心技术。然而受脑电信号非线性、非平稳、高噪声等因素的限制,传统BCI 系统通常只能识别幅值大于2μV 的脑电显性特征,故传统视觉型非侵入式BCI 系统多采用强刺激闪烁以诱发高鲁棒性的脑电信号特征进行控制[2][3],不利于用
近年来,绝大多数ERP-BCI 的研究仍主要集中在基于视觉刺激的视线非独立BCI 的设计优化上。然而,在被试丧失对视线的控制能力或者系统操控需要额外的视觉交互的情况下,这种BCI 方法的系统通信功效急剧下降,实用性难以保障。为了克服视觉刺激带来的局限,学者们开始关注视线独立BCI 技术研究。
视觉脑机接口是最具应用潜力的脑机接口范式之一。大多数视觉脑机接口范式基于通讯调制解调原理设计实现,每一个指令对应一个按特定编码方式呈现的视觉刺激。本研究探索了基于视网膜映射的新范式:当被试注意与某视觉刺激呈现不同方位的视觉目标时,可得到具有不同空间分布特性的大脑视觉响应,并实现个体实时注意不同目标的状态区分。
Artificial neural networks are initially inspired by neuronal structures and connections.It is generally accepted that the neural connection is modified during a learning process.However,it is hard to