【摘 要】
:
随着计算技术的提高,发展流/固/热耦合数值模拟仿真方法称为目前高超声速气动弹性研究的一个重要方向.本文采用以结构时间计算步长作为整体推进时间步长的既考虑到了加热对流场的影响又保证较小的计算量的松耦合方法将本课题组自主开发的非结构混合网格流场求解器(HUNS3D)与基于有限元法的开源结构力学分析程序CalculiX进行源代码级融合,并采用十分适合非结构体网格变形和复杂外形的径向基插值函数(RBF)进
【机 构】
:
西北工业大学翼型叶栅空气动力学国家重点实验室,西安 710072 北京机电工程研究所,北京 100
论文部分内容阅读
随着计算技术的提高,发展流/固/热耦合数值模拟仿真方法称为目前高超声速气动弹性研究的一个重要方向.本文采用以结构时间计算步长作为整体推进时间步长的既考虑到了加热对流场的影响又保证较小的计算量的松耦合方法将本课题组自主开发的非结构混合网格流场求解器(HUNS3D)与基于有限元法的开源结构力学分析程序CalculiX进行源代码级融合,并采用十分适合非结构体网格变形和复杂外形的径向基插值函数(RBF)进行CFD网格和CSD网格之间的数据传递,实现热环境下高超声速飞行其气动弹性的精确预测。传统RBF方法虽然计算精度较高,但是计算量庞大。为了提高计算效率,本文发展了基于双边选点贪心算法的多级子空间RBF插值方法。传统的贪心算法中只选择误差最大的单个点,但双边选点贪心算法中一次选择两个误差最大的点来参与贪心迭代。经数据精简算法改进的RBF插值对网格变形和结构网格到流体网格上的网格位移插值都十分有效。为了进一步提高CFD网格和CSD网格之间的气动热、气动力和表面温度插值的计算效率以及降低插值参数对计算结果的影响,对RBF插值进行了局部并行化。以气动力插值为例进行说明,对每个结构网格点选择一组距离最近的气动力点,进行RBF插值。该方法可将大的线性方程组分解为许多单独求解的小方程组,不仅减小了内存使用和处理器负载,也降低了插值参数的影响,提高了计算效率。为了验证本文提出的气动/热/结构/耦合分析方法,将1987年Allan R. W ieting 在NASA LANGLEY 8-ft高温风洞中所做的激波相互作用下的圆柱壳前缘气动加热试验中的气动加热过程采用数值计算仿真的方法进行模拟。发现考虑气动加热效应与不考虑气动加热效应的热流值有很大的不同,表明考虑热(静)气动弹性性能分析在高超声速飞行环境中的重要性。并且与试验值对比后发现,该方法具有较高的精准度。
其他文献
涡致振动中,当弹性结构的固有频率接近静止圆柱绕流的涡脱落频率时,旋涡脱落频率锁定在结构振动频率上,并靠近结构固有频率,这种奇特现象被称为锁频(frequency lock-in).很多研究者将频率锁定的根源归结为共振或非线性的流固耦合效应.本文运用线性动力学模型,结合流固耦合数值模拟,对Re=60状态下涡致振动锁频现象的产生机理进行了分析.研究表明,低Re下涡致振动锁频现象根据诱发机理可分为共振型
本文从基于CFD的当地流活塞理论出发,推导出俯仰力矩动导数的计算公式,推导结果显示,当地流活塞理论在计算动导数时无法计及减缩频率的影响.为探索当地流活塞理论在不同马赫数下计算动导数适用的减缩频率范围,研究从可以体现减缩频率影响的双时间法入手,推导出动导数和减缩频率之间的关系.结果表明,在一定的减缩频率范围内,动导数和减缩频率之间存在近似的反比例函数关系.通过对比双时间法在不同减缩频率下的动导数计算
由于整个叶片排的气动弹性数值模拟计算量非常大,为了高效地研究叶片模态间耦合对叶轮机颤振的影响,文章基于降阶模型分析了叶片排在叶片不同振动模态耦合时的稳定性.基于模态理论和系统辨识技术分别建立叶片排多模态耦合的结构和气动降阶模型,并将叶片结构运动与气动力的降阶方程在状态空间联立建立叶片排多模态耦合的气动弹性方程.文章以STCF4叶栅以及NASA Rotor67叶片排为例,通过计算气动弹性方程的特征值
叶轮机械气动弹性问题实际是流固耦合问题,所以,相比流固解耦的气动弹性分析方法,流固耦合分析更符合物理实际.文中通过对叶片各节点加载不同的激振力,实现叶片不同模态的振动,进而基于时域推进的流固耦合方法以及自由振动阻尼求解的对数衰减思想,发展了求解叶轮机械叶片不同模态气动阻尼的方法,该方法通过求解叶片在真空及流场中的响应来获得气动阻尼.以跨声速压气机颤振实验转子为研究对象,计算该转子的气动性能和叶片模
传统的行波模型假设不能考虑到多个叶片排间的气动耦合效应,而串列叶栅前、后排叶片之间的气动干扰不仅会改变其增压性能,同时对其颤振特性也有着非常大的影响.为了研究串列叶栅气动弹性系统的颤振特性,论文运用时域CFD(Computational Fluid Dynamics)技术,结合系统辨识及流固耦合方法建立了串列叶栅的气动弹性降阶模型,并用特征解法针对典型串列叶栅的稳定性及振动模式进行了分析.计算结果
通过建立状态空间方程的方法进行了跨音速气动弹性系统颤振问题的研究,提出了一种不同于ERA(特征辨识算法)的跨音速非线性气动力(力矩)的处理技术,完成了降阶气动力(力矩)在状态空间方程中的嵌入.该技术的核心在于应用泰勒展式定理将时滞气动力项进行近似变换,然后借助于CFD(计算流体动力学)技术提供的响应数据完成降阶气动力系统的核函数辨识,最终建立起完整的气动弹性耦合系统,快速高效地完成颤振速度的预测与
为实现在高超声速风洞中开展颤振试验研究,设计了高超声速风洞颤振试验装置和模型保护机构.风洞试验表明该试验装置可用于开展高超声速风洞颤振试验研究,支撑方式可避免风洞及其他机构对模型的频率干扰;保护机构在高动压情况下可正常工作,达到模型保护效果.试验验证了高超声速风洞固定马赫数阶梯变动压和连续变动压两种风洞开车方式.为验证高超声速风洞颤振试验技术,对平板翼进行了高超风洞颤振试验,试验马赫数5.0和6.
在课题组开发的流场求解器HUNS3D的基础上发展了网格变形和气动弹性计算方法.对于物面网格节点数目较多的网格利用贪心算法在过程中进行数据精简从而有效减少计算量.由于结构表面网格相对于流体网格数量较少,故作为RBF的样本点来进行网格变形.气动弹性计算的每步循环中包含表面气动力和表面位移采用RBF作为子程序进行插值.为了证明程序的有效性,利用算例进行了验证.结果证明在基于CFD的气动弹性计算和任意变形
针对高速飞行器的热气动弹性数值分析问题,研究了气动力、气动热、弹性力和惯性力之间的耦合关系,根据气动力、热、结构各物理场的特征时间尺度与相互影响程度确定热气动弹性分析的耦合计算策略,并对不同物理场之间的数据交换方法进行分析,以实现高速飞行器全机量级热气动弹性分析的工程应用.
The High Altitude,Long Endurance aircraft (HALE) get more attentions because of military and civilian uses.The aircrafts are always built with slender high-aspect ratio wings to get high aerodynamic p