Application of Inorganic Nanoparticle Arrays in Organic Solar Cells

来源 :2013年能源颗粒前沿研讨会暨第三届全国能源颗粒材料学术研讨会 | 被引量 : 0次 | 上传用户:liongliong447
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Solar energy accounts for more than 99% of the total energy of the earth.As a pollution-free and inexhaustible energy source, solar energy becomes the focus to resolve the energy crisis.Organic solar have attract a great interest because of their abundantly available raw materials, low costs and simple fabrication technologies.However, the main disadvantages associated with organic photovoltaic cells are low efficiency, low stability and low strength compared to inorganic photovoltaic cells.By mixing the inorganic materials, the hybrid solar cells keep both the advantage of the inorganic materials with high carrier mobility and stable chemistry and the merit of the organic materials with good flexibility, available machinability and high absorption coefficient, which makes the hybrid solar cells become one of the hot research topics in photovoltaic field.In this paper, a nano-tree array system with backbone and branches will be designed and produced.Furthermore, the hybrid solar cells with conformal structure from the arrays will be fabrication.The effect of the growth condition of the inorganic nanostructure on the types, quantities and locations of the native defects will be further raveled.In turn, the effect of the type and location of the defects on the properties of the solar cells will be explored.The inorganic nanostructure in the hybrid solar cells will be optimized, thus, the transfers of the electrons with high mobility in the inorganic material and the holes with low mobility in the polymer will be balanced, which will greatly improves the solar photovoltaic conversion efficiency.
其他文献
With scientific and industrial researches for more than 20 years, carbon nanotubes have already been commercially produced via the chemical vapor deposition method.
会议
聚苯胺(PANI)是一种典型的本征型导电聚合物,它具有合成简便、原料廉价易得、可逆的氧化/还原性能以及良好的导电性能等优点,受到了人们的广泛关注.传统的制备方法采用的化学氧化合成法在水溶液中反应,工艺简单、容易控制,但存在反应浓度低(<0.2M)反应时间长(长达数小时),反应条件苛刻(低温),可重复性差等缺点,往往得不到纳米级的产品.
会议
碳基材料因其原料丰富、价格低廉、制备工艺简单、抗化学腐蚀性能好、比表面积高等优点,成为较为理想的超级电容器电极材料.不同形态和结构的碳纳米结构在电容性能方面具有不同的响应特征,其中碳纳米管和石墨烯具有巨大的比表面积,电化学性能更为优良.
会议
金属氧化物纳米晶具有优异的光学、电学、力学性质,在光电转换、新型显示、新材料等领域具有广泛的应用.纳米晶的形貌、晶型、分散性决定了其特性和应用价值.本课题组根据"自下而上"的策略,通过对从分子到纳米晶的成核过程及晶体生长过程施加影响,实现对纳米晶晶型及形貌调控,制备了一系列具有高分性的金属氧化物纳米晶[1].
会议
Solar grade silicon is in high demand for solar cells to generate electricity for domestic uses, telecommunications and distributed power generation.[1] In the past two decades, the photovoltaic (PV)
会议
颗粒学是一门跨学科、多学科和交叉学科的学问.颗粒学基础研究涉及颗粒制备,颗粒的测量和表征,颗粒的形成与团聚,颗粒与气、液的分离,固体颗粒的输送,流态化,破碎,团球,气溶胶等诸多科学与技术问题,其在核能领域的应用研究还鲜见综述.核能高效利用已经被列入国家能源发展规划,计划到2050年,核能达到中国一次能源供给由目前的1.8%提高到15%.高温气冷核反应堆是一种使用球形燃料元件的核反应堆,其安全性为国
Lithium sulfur batteries attract great attention due to their high energy density, while the real applications are still hindered by the rapid capacity degradation.
会议
化学蓄热是利用材料的可逆化学反应蓄热,相对于传统的蓄热方式其储能密度高,利于能量长期储存,因此目前在太阳能应用、化学热泵、化学热机等方面都有较大的应用价值.结晶水合物的蓄热技术研究作为化学蓄热系统发展的一个重要方向,LiOH[1]以其良好的温度适用范围和较高的能量存储密度(1470kJ/kg),极有希望成为新颖而优异的化学蓄热功能材料.然而LiOH在关键的化学放热反应步骤中仍然存在不足,如图1所示
近年来,锂空气电池因为具有非常高的理论能量密度[1]而引起广泛关注.但是空气中水分和二氧化碳的存在会影响电池的充放电,因此目前研究锂空气电池时实际上工作气体通常是高纯氧气[2].
会议
Two key challenges in the use of molten salts based medium and high temperature thermal energy storage materials are their chemical incompatibility and low thermal conductivity.The work reported in th