基于CACO-SVM的高速列车头型多目标优化

来源 :第八届全国流体力学学术会议 | 被引量 : 0次 | 上传用户:wangyuanshan3
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  基于混沌优化理论和蚁群算法构造出了一种混沌蚁群算法(CACO),解决了基本蚁群算法容易陷入局部最优解和随机变异方法导致的搜索效率低的问题。对不同种类的算法进行了对比分析,发现混沌蚁群算法的寻优能力明显优于遗传算法和粒子群算法。针对头型优化中小样本、非线性的特点,提出了基于RBF核函数的支持向量机(SVM)代理模型,并结合混沌蚁群算法对三辆编组的高速列车简化气动外形进行了多目标优化。优化结果表明,提出的基于SVM和混沌蚁群算法的优化方法寻优能力强、预测精度高,优化后,三辆编组简化外形头车气动阻力和尾车气动升力均明显减小,提出的优化设计方法高效、方便,可以为高速列车气动外形多目标优化提供参考。
其他文献