分形矢量光场聚焦性质的研究

来源 :中国物理学会2016年秋季会议 | 被引量 : 0次 | 上传用户:anchor1989
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  分形是在1967年由数学家芒德勃罗(B.B.Mandelbrot)提出的几何概念[1],其广泛存在于自然界之中,并且已经在物理学、化学、生物学、材料学等多个领域拥有了广泛的应用.近年来在光学领域,激光偏振态的调控成为了一个研究的热点[2],偏振态空间变化的矢量光场在光学超衍射极限、光学微操纵和非线性光学等领域拥有众多的应用.
其他文献
人工超表面相对于传统的三维超材料,以其更易制备、耗材更少和性能优异等特点而得到了大量研究者的青睐,成为近年来比较热门的一个研究方向。经过特殊的设计,表面超材料可被用来实现多种功能,如近场等离激元单向传输,偏振转换,负折射率材料,光自旋霍尔效应,全息成像等。我们设计了一种基于金属表面等离激元的人工超表面,并利用聚焦离子束刻蚀技术制备了样品,它可以同时实现利用入射光的自旋控制近场表面等离激元单向传输和
经典理论认为当光入射到亚波长金属小孔时,透射率将大幅衰减(正比于λ-4),而后来的研究发现对于金属薄膜中的二维孔阵列,光可以实现高透射率,即所谓超透射。现在一般认为超透射是孔阵列面上的扩展表面波和孔径中的局域模式共同作用的结果。对于扩展态已经有充分的研究,而对于局域态则有多种来源。
与标量光场相比,紧聚焦的矢量光场不仅存在横向电场,而且具有非传播的纵向电场分量,同时可以形成超衍射极限的聚焦光斑。由于矢量光场在紧聚焦条件下可以获得超衍射极限的光斑,从而突破了衍射极限的限制,因此在超分辨率成像、表面等离子激元增强聚焦、单分子探测和微纳加工等领域有着广泛的应用[1-3]。
通过金属超表面结构单元的设计,利用单层超表面实现了太赫兹(THz)波段宽带透射式垂直偏振转换1.该偏振转化的产生主要来源于两个方面,一方面,局部不对称的结构与入射光相互作用,在谐振峰附近产生垂直向偏振分量,通过局域表面等离子谐振(LSPs)的近场相干相消,使得与入射光平行方向的出射光相互抑制不能传到远场,从而仅保留垂直向偏振分量;另一方面,整体对称性的设计能够使得激发的LSPs同样具有对称性质,从
超表面(Metasurface)因其独特的物理特性及其对电磁波振幅、相位的灵活调控能力,使其在光束控制、隐身技术等诸多方面具有诱人的应用前景。通过设计特定微纳结构来实现0-2π范围内任意电磁相位分布,进而根据惠更斯原理实现任意波前的调控,在计算全息方面吸引了很多人的研究兴趣。
圆锥曲线是数学中一种非常古老的曲线,并广泛应用于各种领域,如天体物理,工程,建筑等方面。然而这种曲线的自旋光学特性却未有人涉及到。我们利用狭缝的几何相位,并将它们按照一定的方式排列成椭圆和双曲线的人工超表面。我们发现对于椭圆超表面,不同自旋的光子能够分离,并分别聚焦在椭圆的两个焦点上,这就是光自旋霍尔效应。而对于双曲线的超表面,我们发现这种结构有自旋选择的特点,只可将一种的自旋光子同时聚焦在双曲线
半导体量子点由于其具有类似原子的特性被作为固态量子比特的载体受到人们的广泛关注,本报告将对单量子点中的电荷,自旋,波函数以及与微腔光场的相互作用的调控,讨论单量子体系的光辐射及其在量子信息处理中的应用。我们首先将单个量子点放到肖特基结的绝缘层中,通过电场精确控制量子点中的电荷数量,实现了不同带电激子态光辐射。
我们设计和使用超螺旋等离子透镜结构利用显微成像、傅里叶变换和数值模拟验证的方法开展了对其表面等离激元场中矢量涡旋光场特点及形成机理的研究。实验上,分别使用右旋圆偏振光和左旋圆偏振光对右手超螺旋结构和左手超螺旋结构照射,利用带有显微物镜的马赫曾德尔干涉仪对SPP场进行成像并利用偏振片提取分量。通过对SPP场与参考光的干涉条纹做傅里叶变换,分别得到SPP总场及其X分量、Y分量的振幅和相位分布图样。在结
矢量涡旋光场是偏振态在空间上非均匀分布,相位在空间上呈螺旋状分布的光场。由于矢量涡旋光场的相位和偏振态在空间上奇异的的分布特性,因此矢量涡旋光场在光操纵、表面等离子体基元、超衍射、非线性光学等领域具有重要的应用价值。本文是基于空间光调制器(SLM)高效生成矢量涡旋光场。液晶SLM的工作原理是基于液晶分子的双折射效应,而液晶分子的光轴方向会随加载的电压大小而在某一平面内变化,即当某一偏振方向的入射光
会议