三层parareal算法的分析

来源 :第十六届全国微分方程数值方法暨第十三届全国仿真算法学术会议 | 被引量 : 0次 | 上传用户:e7889620621
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  :parareal 算法可以自然推广到多层,其好处是减少墙上运算时间。对于三层parareal算法的一种形式,我们详细推导了迭代矩阵,并利用它的特殊结构给出了易于计算的谱半径估计。
其他文献
  In the last few decades,Runge-Kutta-Nystr"om(RKN) methods have made significant progress and the study of RKN-type methods for solving highly oscillatory d
会议
  本文考察了弱奇性Volterra 积分微分方程的谱配置法,并对该方法进行了收敛性分析,分析结果表面,误差收敛阶依赖于方程解函数的正则性,我们也用数值实验证实了这一结论。本文
  In this talk,we develop continuous-stage Runge–Kutta–Nystr(o)m(csRKN)methods for numerical integration of second-order differential equations.
  In this work,we propose a class of explicit θ-schemes for solving mean-field backward stochastic differential equations.
  Recent research for parallel numerics of time-dependent PDEs provokes fast growing interest for the study of parallel-in-time(PinT)algorithms,because in man
  This talk is divided into two parts.In the first part we consider strong convergence of semidiscrete finite element method for stochastic partial differenti
  In this talk,we develop a new technique to study the optimal convergence orders of collocation methods for Volterra functional integral equations with vanis
  在量子化学中,泊松玻尔兹曼溶剂化模型有着广泛的应用。本文提出一种特殊的区域球状分解方法,用于快速求解线性泊松玻尔兹曼方程。
  We consider the conforming and nonconforming virtual element method(VEM)for the approximation of the time fractional reaction-subdiffusion equation involvin
会议
  The multigrid-reduction-in-time(MGRIT)technique has proven to be successful in achieving higher run-time speedup by exploiting parallelism in time.