【摘 要】
:
针对移动机器人在未知环境中的导航要求,提出一种基于视觉显著特征构造自然路标,以此局部特征代替整幅图像特征的场景识别方法。为根据显著位置形成合适的路标区域,提出了基于分形的尺度选择方法。设计了包括梯度方向、二阶不变矩、归一化色调的自然路标表示方案。室内室外环境的场景识别实验表明,该方法能够较好地容忍尺度、视角等变化引起的差异,能够保证静态场景的准确识别。
【机 构】
:
中原工学院计算机学院,郑州 450007 中南大学信息科学与工程学院智能所,长沙 410083 中
论文部分内容阅读
针对移动机器人在未知环境中的导航要求,提出一种基于视觉显著特征构造自然路标,以此局部特征代替整幅图像特征的场景识别方法。为根据显著位置形成合适的路标区域,提出了基于分形的尺度选择方法。设计了包括梯度方向、二阶不变矩、归一化色调的自然路标表示方案。室内室外环境的场景识别实验表明,该方法能够较好地容忍尺度、视角等变化引起的差异,能够保证静态场景的准确识别。
其他文献
在基于内容的音频信息检索技术研究中,人们更期望直接使用语音检索出相关的音频信息。因此,如何利用语音信息进行音频信息检索是一个研究热点。本文针对基于说话人的语音检索,引入反转隐马尔科夫模型,提出了一种基于反转隐马尔科夫模型的说话人识别方法,并通过实验说明了该方法的有效性。
有限状态自动机理论能够有效描述语言现象,近些年,自动机方法在自然语言处理领域得到了广泛的应用。本文给出了一种基于有限自动状态机的英语词法分析方法,该方法在词法分析方面具有较高的效率,能同时完成、生成和分析,弥补了普通的词法分析技术的单向性缺点。本文首先对自动机及其相关算法、形式中的正则文法、正则表达式进行了论述,分析自动机、正则文法和正则表达式之间的等价性,然后结合自动机理论对双层词法模型的原理进
基于树库和机器学习的语言处理方法是自然语言处理领域中的一个研究热点。本文旨在探索利用语言学手段来提高句法分析精度的可能性。本文采用MaltParser和自建的汉语依存树库进行了相关的汉语依存句法分析实验。通过对句法分析结果的分析,找出了影响句法分析精度的主要因素,并据此对树库中处理某些语言结构的方式进行了修改,然后再对得到的句法分析数据进行进一步的分析,以确定所用方法的有效性。结果表明,无标记依存
自Lee和Seung在Nature上发表了非负矩阵分解的具体算法以来,非负矩阵分解方法得到了很大的发展,并在科学研究工作中得到了广泛的应用。与主成分分析方法和独立成分分析方法不同,非负矩阵分解方法更加适合于局部特征的抽取。本文将这种方式应用到汉字字形的处理中,成功地从一些汉字样本中抽取出我们称为偏旁部首的基本结构。文章通过在目标函数中引入惩罚因子,提出了更加适合于汉字分解的3bNMF方法。
针对常用银行汉字字符集的识别,本文实现了三种基于不同的特征提取方法的神经网络脱机手写汉字识别系统,在分类网络的基础上,设计和实现了一种针对每个字符具有可信度判别功能的神经网络作为一种新型的多分类器集成方法。实验结果表明,该方法对于脱机手写汉字识别率的提高具有显著作用。
化石标本内部形态的研究是生物的系统演化研究中不可缺少的一部分。由于珍稀化石不允许对标本进行实体解剖,所以珍稀化石的形态学研究只能停留在标本的外表。CT技术及三维可视化技术的发展已使人们能够将珍贵标本的形态学研究深入到标本内部。本项研究以化石和现生大熊猫头骨为材料,获取了其头骨内部的三维影像,并虚拟提取解剖了脑内模,为大熊猫演化的研究提供了新的数据。
微纳米驱动精度和运动学特性对微纳米操作及加工装配等操作控制具有重要意义。本文针对微纳米驱动系统的运动状态检测问题,研究了基于序列图像的环境位移视觉检测方法。通过分析标准光栅的显微图像序列特点,提出了一种基于图像灰度分布特征的投影匹配方法。该方法对色彩纹理单一的微观图像序列进行处理,实现了微纳米操作系统平台的微位移检测,并给出了实验研究和算法效率分析。从实验结果可以看出,投影匹配法检测均方差为0.1
重度污染笔迹图像的斑点噪声区域与字符笔画区域存在形态差异; 斑点噪声主要是在纸张空白处随机分布的较模糊的散点;而字符笔画主要呈长条状,且灰度与纸张反差较大。本文提取笔迹图像的惯性矩特征来描述斑点噪声区域与字符笔画区域的形态差异,并用来进行笔迹图像分割。用这种方法对重度污染笔迹图像进行去噪和字符提取,效果良好。
步态识别主要通过人体走路姿势来识别人的身份。首先,应用背景减除法分隔出人体轮廓,通过人体宽高比的相关信号确定运动周期。然后,在对二值周期序列进行Radon变换,构造特征向量模板。对所得到的特征向量主成分分析,映射到低维特征空间。最后,采用最近邻分类器分类。实验结果表明,该方法可以有效降低前期处理对分类识别的影响,而且在CASIA三种不同行走状态数据库中取得很好的识别率。
针对现有图像型火灾探测技术存在的问题,本文提出一种集动态图像理解、火灾多特征综合判断等技术于一体的基于全方位视觉的火灾探测方法。采用全方位视觉传感器实现大面积现场的实时全景视频监控;通过背景消除,使用颜色、闪烁、形体变化等特征识别视频中的火焰;分析火焰的面积变化和整体移动综合判断火灾发生。该方法实时性能好、能够有效降低误报率、对火灾点定位准确,使计算机具备智能视觉火灾监控的能力,甚至到达自动灭火。