【摘 要】
:
Since commercialization in 1990,the rechargeable lithium-ion batteries (LIBs) are widely used as power sources for mobile telephones,computers,toys and so on.However,extending electrode materials for
【机 构】
:
Li-ion Batteries Lab,School of Materials Science and Engineering,China University of Mining and tech
论文部分内容阅读
Since commercialization in 1990,the rechargeable lithium-ion batteries (LIBs) are widely used as power sources for mobile telephones,computers,toys and so on.However,extending electrode materials for LIBs still remains a challenge,because they demand batteries at a lower cost,batter thermal property,and longer cycle life.
其他文献
液相法和固相法结合制备LiNi1/3Co1/3Mn1/3O2,利用XRD、SEM对材料进行表征.制备的LiNi1/3Co1/3Mn1/3O2材料有轻度团聚.采用恒流充放电技术、交流阻抗技术和循环伏安法研究了材料在有机电解液和水系电解液中的电化学性能.
自从1997年,Goodenough等[1]研究橄榄石型结构磷酸铁锂 (LiFePO4),十多年来,其制备工艺日趋成熟,商业化进展迅速.受LiFePO4成功应用的影响,橄榄石结构磷酸盐家族的另一种重要材料—磷酸锰锂 (LiMnPO4) 越来越受到人们的关注.
Microflower structural δ-MnO2 assembled by ultrathin nanosheets grown on three dimentional graphene nanosheets is synthesized for the first time.Herein,high conductive graphene networks (Figure 1a) ma
采用草酸沉淀法制备了一系列不同镍掺杂量的锂离子电池正极材料LiNi0.5-xMn1.5+xO4(0≤x≤0.45),研究了Ni/Mn比对于材料结构及性能的影响.X射线衍射(图1)结果显示:在x为0到0.45的范围内,所有样品都呈现尖晶石结构,随着Ni/Mn比的减小,衍射峰向高角度发生了轻微的移动,晶胞参数从x=0时的8.166(A)逐步增大到x=0.45时的8.214(A)(表1),说明镍的减少可
目前,可移动电子设备及电动汽车对电池提出更高的要求,需要电池往高能量密度发展,不同类型的高电压、高容量正极材料得到了广泛的研究.在诸多正极材料中,尖晶石型的LiNi0.5Mn1.5O4以其高电位(4.7Vvs Li/Li+),良好的可逆容量(大约135mAh/g)等优异的性能[1]表现得到了广大的关注.
LiNi0.5Mn1.5O4 (LNMO) material,with a theoretical capacity of 147 mAh g-1 and a high discharge voltage (4.7 V vs.Li/Li+) plateau,has emerged as a promising cathode material for high energy density lit
通过液相沉淀法结合高温固相法制备了Sm掺杂的LiFePO4/C,测试结果表明少量Sm掺杂能够优化颗粒形貌,减小极化过电势和传荷电阻,从而提高了材料的电化学性能.大量的Sm掺杂会形成过多的SmPO4能够阻碍材料的电化学性能.电化学测试结果表明LiFe0.99Sm0.01PO4/C在1C,2C,5C和10C下的放电容量分别为148.1,133.4,117.5和106.6mAh g-1.并且材料具有很好
LiMn1-xTixO2 (x =0,0.01,0.02,0.03) cathode materials were successfully prepared by the hydrothermal treatment of Mn2O3 and TiO2 with excess LiOH·H2O aqueous solution at 150℃.The crystal structure and
As a promising cathode materials,LiFePO4 [1] received much attentions owing to its low cost,environmental compatibility,reasonable theoretical specific capacity (ca.170 mAhg-1),acceptable operating vo
The thermal stability of a FeF3 cathode was studied by differential scanning calorimetry (DSC).The lithiated electrode was found to be more thermally stable than delithiated one.On the other hand,the