过渡金属磷化物用于肉桂醛选择加氢的研究

来源 :第十一届全国青年催化学术会议 | 被引量 : 0次 | 上传用户:win13790
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
肉桂醛分子中同时存在C=C、C=O和苯环等不饱和官能团,其中C=C键键能为615kJ/mol,C=O键键能为715 kJ/mol。而高选择性地对C=C键或C=O键进行加氢不仅可以制备有用的精细化学品,而且在选控化学理论方面也具有重要的意义。近年来在加氢脱硫和加氢脱氮反应中表现出很好的加氢活性和抗硫性能。本文首次尝试将过渡金属磷化物用于肉桂醛选择加氢反应,发现磷化镍(Ni2P,Nil2P5)催化剂具有良好的加氢活性和苯丙醛选择性。
其他文献
介绍了非线性声学Westervelt方程及时域有限差分方法下的差分格式,利用时域有限差分法解决了理想介质中的非线性声场的传播问题。编写了非线性声波在理想介质中传播的数学模拟程序,模拟了正弦波波源在理想介质中产生非线性声场的传播情况,分析了非线性声场的传播过程,验证了非线性声场中冲击波的形成。结果表明时域有限差分法是模拟非线性声场的有效工具。
基于Sato半车轮轨耦合动力学模型,采用Hertz非线性接触理论来模拟轮轨接触力,导出轮轨耦合非线性动力学模型的状态方程,采用自适应变步长Runge-Kutta法求解状态方程,可得到了轮轨系统各部件位移、速度、加速度等随车辆运行速度的变化规律及车辆失稳的临界速度。数值结果表明该方法不仅可以得出系统的失稳临界速度,而且可以观察到各部件的振动情况和失稳形态。
本文在参数空间中对Chay模型的钙动力学进行了研究,其中以L型钙通道的最大电导gCa为主要的分岔参数,确定了具有不同周期和振幅的周期解共存的参数区域。利用奇异性理论方法,局部分析表明多个周期解的存在是由于退化的极限环鞍结分岔所导致,其特点是三个极限环的鞍结分岔重合然后消失。
本文研究了四维一般非线性动力系统的规范形及其计算,借助于maple符号计算程序获得具有不同线性形式的任意四维五阶动力系统的规范形、计算公式以及系数关系,这对实际应用系统模型的简化及控制问题具有重要的理论指导意义。
研究噪声对神经元耦合系统的放电频率同步的影响。单个神经元随着外界直流激励的增加会经历由可兴奋态到放电状态的转变。本文研究了神经元在这两种状态下,外界噪声对未耦合以及弱耦合神经元达到频率同步的作用。噪声能够诱导未耦合神经元实现频率同步,同时也能够增强弱耦合神经元的频率同步。本文还研究了耦合作用对随机神经元频率同步的作用。结果表明耦合和噪声在神经元的频率同步中发挥着相互补充的作用。
本文讨论含有界随机参数的Duffing系统在脉冲激励和谐和激励联合作用下的随机对称破裂分岔和随机倍周期分岔现象。首先应用Chebyshev正交多项式将随机Duffing系统化为等价确定性系统,而后通过等价确定性系统来讨论原随机参数系统的随机分岔。数值结果表明正交多项式逼近法是讨论谐和激励和脉冲激励联合作用下的单自由度随机参数系统动力学行为的一种有效方法。
为深入研究振动破碎机的刚散耦合非线性动力学问题,本文针对单边冲击振动破碎系统,用数值模拟方法(Runge-Kutta)研究了其动力学响应,分析了系统的幅频曲线、破碎力曲线、物料的能量吸收曲线、以及间隙对振幅和破碎力的影响规律,为耦合动力学的深入研究和振动破碎机的动力学设计奠定了基础。
本文从动力学和控制的角度研究具有脉冲效应复杂时滞动力网络的同步动力学问题. 基于时滞动力系统的脉冲稳定性理论,给出了一些简单而又一般的网络同步化准则, 进一步地,将所获得的结果应用到由混沌时滞Hopfield神经网络为动力节点构成的具有脉冲效应无标度(scale-free)网络,数值模拟表明所获理论结果的正确性.
二氧化钛等多孔金属氧化物在多相催化、太阳能电池、传感器以及光电元件等方面有着广泛的用途,如何制备得到可控表面形态和孔壁结构的二氧化钛成为研究的热点。模板法具有可控制备,操作简单等优点得到普遍的关注。常用的模板有表面活性剂、阳极氧化铝、生物材料、活性炭等。活性炭纤维具有发达的微孔孔隙结构,较大的比表面积和较高的吸附速率和吸附容量,目前普遍作为二氧化钛光催化剂的良好载体。采用溶胶凝胶法、胶粘法、离子团
催化加氢是降低柴油馏分中芳烃含量的有效途径,但由于芳烃中部分较大分子很难扩散进入微孔分子筛孔道,而在孔道内形成的大分子也不能快速逸出,导致副反应发生。本文基于柴油中典型芳烃化合物和含硫化合物的分子尺寸以及择形性和溢流氢效应,在第二段加氢工艺中,设计合成了具有多级孔道结构的Beta/MCM-41复合分子筛,用于柴油芳烃加氢饱和催化剂的载体,考察其芳烃加氢的催化活性和抗硫性,取得了比较好的效果。