应用于肿瘤治疗的载阿霉素超声敏感囊泡的研究

来源 :2015年全国高分子学术论文报告会 | 被引量 : 0次 | 上传用户:jiaxiaoli00
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  超声由于其可实时显影、简便易行,在引导组织活检及介入治疗等方面应用广泛;此外,超声波还可以增加血管和细胞膜的通透性,因而可以应用于控制药物释放,解决药物输送体系在肿瘤组织难渗透的问题。
其他文献
Viscoelastic fluids under varying conditions(temperature,salinity,concentration)can exhibit exponential and/or power-law relaxations.We investigate the flows of these gel-like fluids through mesoscopi
会议
This minisymposium focuses on the analysis for system of conservation laws and related models.It covers the following topics: 1.Multidimensional conservation laws and transonic flows; 2.Compressible N
会议
Transformation optics(TO)is a powerful mathematical tool that allows to control light propagation and shape light path almost in arbitrary ways.In this presentation,we will introduce our works to crea
会议
A major problem with magnetic materials in application is they naturally have high losses in a wide frequency range of interest(e.g.,Faraday rotation using ferromagnets in optical frequencies).
会议
Special functions and orthogonal polynomials is a very classical subject with numerous applications in both pure and applied mathematics.Tremendous progresses in this area have been achieved recently
会议
We develop the Riemann-Hilbert approach to study the global asymptotics of the Charlier polynomials.
会议
The nearly-analytic symplectic partitioned Runge-Kutta(NSPRK)method is a type of finite difference method for solving seismic wave equations.It uses the fourth-or higher-order nearly-analytic discrete
会议
Given a set of sensors with limited energy and a set of targets to be monitored,the goal of the maximum lifetime κ-cover problem is to find an active/sleeping schedule for sensors to maximize the time
会议
We give a simple proof of a removal lemma for large intersecting families,showing that a k-uniform set family on [n] with close to((n-1 k-1))sets and few disjoint pairs can be made intersecting by rem
会议
环状高分子及含环高分子的几何尺度是表征其结构的重要特征之一,在高分子科学、生物物理学等领域中起着非常重要的作用。本文基于单环的几何结构,构建了环结构在高分子均方回转半径中的统计权重,提出了含环结构高分子均方回转半径的计算方案。