【摘 要】
:
锂离子电池作为移动式电源由于其诸多优点被广泛应用在便携式电子设备、移动通讯等领域中[1].传统的碳作为锂离子电池负极材料由于受到理论容量低等固有缺陷的影响在新型锂离子电池中的应用受到越来越大的限制[1].
【机 构】
:
厦门大学化学化工学院,福建厦门 361005 机械与生物医学工程系,香港城市大学,香港 九龙塘
论文部分内容阅读
锂离子电池作为移动式电源由于其诸多优点被广泛应用在便携式电子设备、移动通讯等领域中[1].传统的碳作为锂离子电池负极材料由于受到理论容量低等固有缺陷的影响在新型锂离子电池中的应用受到越来越大的限制[1].
其他文献
Special mandrel and composite manufacturing technology (hot press forming technology, resin transfer molding technology, filament winding technology, etc.) is necessary to fabricate the composite stru
Voids are one of the most common types of manufacturing induced defects that have significant influence on material properties of the composite materials.The equivalent stiffness of unidirectional fib
Subtract: The object of present study is to design and manufacture T-shaped and K-shaped composite truss joints using non-crimp warp knitting fabric by vacuum assisted resin infusion molding process.T
Li-ion battery has been considered as one of the most promising energy storage devices due to its high energy density,environmental friendliness,stable cycling life,and thermal stability [1].Transitio
尽管在过去十来年二次锂离子电池实现了了深远的意义,但是发展用于电动车的高能量、低成本、安全的锂离子电池仍是一个挑战[1].传统锂离子电池常用的负极材料是碳材料,虽然其价格低廉,但存在安全隐患和循环性能差等问题[2].Li4Ti5O12负极材料具有较安全的工作电压(1.55 V vs Li/Li+),可避免安全隐患,但理论容量较低(175mAh g-1)[3].新型材料TiNb2O7有着和Li4Ti
Recently,various nanostructured transition metal compounds(TMO)have been exploited as one of the most promising candidates for potential application in energy-related devices,owing to their higher the
TiO2 has received special interest as anode material in lithium ion batteries(LIBs),because it is not only a fast and relatively high voltage insertion host for Li+,but also a low cost,abundant and en
Self-assembly of opposite charged graphenenanosheets(GNSs) and Si through electrostatic interaction is an efficient method to fabricate GNSs-encapsulated Si nanostructures as electrode materials forli
作为一种储能器件,锂离子电池具有能量密度高,使用寿命长以及环境友好等特点,在便携式电子设备、电动汽车等领域具有广泛的应用前景.为进一步提高锂离子电池的实际比能量,寻找安全稳定且比容量高的电极材料仍是目前研究的热点.二氧化钛(TiO2)结构稳定,价廉易得,无毒无害,是一种具有发展前景的锂离子电池负极材料.
负极是决定动力锂离子电池综合性能的重要因素之一,现阶段锂离子电池负极材料技术开发主要集中在石墨、硬碳、软碳、钛酸锂、合金等材料体系.硬碳(Hard Carbon)是指难石墨化碳,容量可达到400~700mAh/g(远高于石墨的理论容量372mAh/g).