Native XML数据库中XQuery语法解析策略的研究

来源 :2009中国计算机大会 | 被引量 : 0次 | 上传用户:apple2008zxffxz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
XQuery作为Native XML数据库中的查询语言,伴随着XML的不断应用,也将在各个领域中得到广泛的应用。为了更好的支持XQuery,目前很多的研究人员投入大量精力对其解析进行研究。同时,与同样是数据库查询语言SQL相比较,XQuery有其更加灵活的特性,因此对于XQuery进行的语法树模型建立更加困难。本文在考虑到XQuery中FLWOR表达式的for子句和let子句数目不确定,以及XQuery各个表达式可以灵活嵌套的前提下,提出了一种语法树模型。并且针对该语法树模型,本文进行了XQuery主要查询表达式的执行算法设计。
其他文献
对传统主题图进行扩展,实现了基于扩展主题图的多源异构知识融合.结合全信息理论与扩展主题图结构特点及语义信息,提出了面向多源知识融合的扩展主题图相似性算法ETMSC,该方法综合了语法相似性、语义相似性和语用相似性,不仅考虑了扩展主题图元素间组成结构上的相似性,还充分考虑了其涵义以及所处语境的相似性.实验结果表明,ETMSC算法比目前的单纯基于语法或语义的相似性算法,F值平均提高了9.2%~11.1%
数据流的变化往往表明产生数据流的时象特性可能发生了某种改变,具有需要进一步关注的领域含义,因此目前许多监控应用中需要对数据流的变化进行检测.同时,在很多应用中数据流的数据特征呈现出伪周期性,即数据特征在一定程度上会按照固定的时间间隔反复出现,但各个时间间隔内的数据出现规律又不会完全相同.在数据流上的现有变化检测算法并不适用于对出现密集程度较高的伪周期数据流周期间的变化进行检测本文对伪周期数据流变化
数据集成技术自二十世纪八十年代开始研究,旨在为访问多个数据源提供统一的访问接口和高效的查询处理能力。近年来,仍然有大量工作在数据集成查询处理领域展开,这些工作的主要研究目标是应对复杂的数据管理任务和查询处理环境.本文回顾和总结近年来数据集成查询处理技术中具有代表性的研究成果,对其进行分类和比较,分析它们的主要贡献和不足.此外,本文还探讨数据集成领域的未来研究方向。
在Deep web环境中,如何解决查询失败并保证查询执行结果的数据质量已经成为一个重要的研究问题。本文针对这一问题,提出了基于查询松弛的查询计划生成与数据集成方法.本文中首先提出了基于对象属性重要度的查询松弛算法,通过属性分组树产生查询松弛计划以解决失败查询造成的数据质量问题.其次,本丈构建了查询结果数据集成模型对查询松弛产生的数据进行集成。数据集成中主要引入了基于查询松弛二次查询的属性补全策略和
Web服务的语义建模是指对Web服务的属性、功能和结构等进行语义描述使用户能够对服务自动地定位、选择、使用和组合。本文以动作理论和描述逻辑为基础对服务的逻辑层信息(控制流和数据流)进行语义建模,用带前提和结果的原子动作描述简单服务.用复杂动作描述组合服务的控制流,用服务间的依赖关系描述数据流,并提出一个基本的Web服务自动组合框架.在该框架中,Web服务自动组合被划分为逻辑层和实现层两部分,于是服
离散化是Rough集理论研究的一个重要内容,目前基于Rough集的离散化算法很难兼顾高识别率和高效率。文中分析了候选断点在单属性上的重要性值分布规律,提出了“先动态聚类再选择候选断点”的两步处理思路和一种基于Rough集的快速离散化算法.该算法首先能够根据数据自身特点进行快速动态聚类,有效降低了候选断点的数目,快速地实现了决策表的离散化.实验结果表明,文中算法保持了与已有算法可比的正确识别率,且运
针对现有相关性度量方法只能直接计算两个连续特征或两个离散特征之问的相关度的问题,本文提出了一种度量连续特征与离散特征之间的相关性方法,在此基础上,进一步提出一种基于混合特征相关度的特征选择方法,并给出了一种闽值选择的指导性策略。提出的特征选择方法关于数据集大小具有线性时间复杂度,可以用于大规模数据集中的特征选择。在真实数据集、UCI机器学习数据集上的实验结果表明,本文提出的相关度计算方法及特征选择
本文提出一种自适应的在线跟踪算法,通过协同训练和粒子滤波算法的相互补充实现鲁棒和高效的目标跟踪。在粒子滤波的框架中。本文采用半监督的协同训练算法构建两个目标分类器并进行在线更新和相互增强,从而提高粒子滤波器的目标判别能力和对因光照、姿态变化、摄像机抖动和部分遮挡造成表观特征变化的适应能力。同时,结合重要采样的粒子滤波算法利用物体运动的时空约束务件和目标潜在的分布信息进行目标采样,不仅提高了采样的效
软件适应性体现为软件适应变化的能力.经验表明:软件产品结构与软件质量属性之间存在着一定的联系.面向对象的结构度量已较为成熟,本文旨在研究哪些面向时象结构度量指标是影响软件适应性质量的关键因素.利用领域知识结合经验数据.基于贝叶斯网建立了面向对象结构指标与软件适应性之间的关联模型.通过对适应性模型的分析表明:类的加权方法数、方法的内聚缺乏度、方法隐藏因子和多态因子四个指标对软件适应性的影响较大.模型
Wiki已经成为时下越来越受欢迎的内容与知识管理工具,而基于Wiki设计的需求获取与管理丁具可以将涉众由单纯的问题提出者转变成问题的解决者,本文首先介绍一种基于Wiki的需求成熟度指标评价体系,然后给出此体系下的成熟度计算方法和具体算法,最后通过已设计的需求获取与管理工具SKLSEWiki来验证成熟度算法的有效性。