论文部分内容阅读
本文研究基于学习的群体动画生成技术,通过建立基于高斯过程隐变量模型和隐空间动态模型的运动姿势学习模型,将高维运动姿势映射到低维隐空间中,并在低维隐空间对相邻姿势的动态演化的建模,通过对已有运动数据的学习获得组成该运动的姿势的概率分布,通过隐空间中的动态预测和Hybrid Monte Carlo采样得到符合给定概率分布的隐轨迹,通过姿势重构得到原运动非常相似但又不同的一系列自然的运动,以产生群体动画,从而避开传统的基于几何和物理约束的逆运动方法固有的困难和复杂性。