论文部分内容阅读
摘要:电解锰废水中含有高浓度的铬锰,采用传统工艺处理这种废水时,出水重金属离子浓度很难达标,且污泥稳定性差,易造成二次污染。本课题分别选用还原沉淀-MnO2自催化氧化、MnO2自催化氧化-常温铁氧体、常温铁氧体法三种工艺处理电解锰废水,并考察了不同因素对出水重金属离子浓度的影响及所生成污泥的稳定性,实验结果如下:(1)还原沉淀-MnO2自催化氧化工艺处理电解锰废水的研究:反应分三个阶段,在Cr6+的Na2SO3还原反应阶段,投加0.5g/L的Na2SO3做还原剂,调节还原反应pH值为4,反应6min,将废水中的Cr6+还原为Cr3+;在Cr3+的沉淀反应阶段,调节沉淀反应pH值为8,反应10min,使Cr3+生成Cr(OH)3沉淀而除去;在MnO2自催化氧化阶段,投加25g/L的MnO2做自催化剂,调节曝气pH值为9,曝气10min,将废水中的Mn2+转化为MnO2沉淀而除去。(2)MnO2自催化氧化-常温铁氧体工艺处理电解锰废水的研究:反应分两个阶段,在MnO2自催化氧化阶段,投加20g/L的MnO2做自催化剂,调节曝气pH值为9,曝气10min,将废水中的Mn2+转化为MnO2沉淀而除去;常温铁氧体反应阶段,投加300mg/L的Fe2+,调节铁氧体反应pH值为8,反应10min。(3)常温铁氧体法直接处理电解锰废水的研究:反应分两个阶段,在常温铁氧体反应阶段,投加300mg/L的Fe2+,调节反应pH值为9,反应40min,在污泥陈化阶段,调节污泥陈化pH值为12,搅拌30min,回流至反应器诱导形成更多铁氧体,如此循环四次。本课题开发的三种适合处理电解锰废水的工艺,最终出水总铬浓度从100mg/L降至低于0.187mg/L,出水Mn2+浓度从1000mg/L降至低于1.253mg/L,总铬去除率高于99.81%,Mn2+去除率高于99.875%。曝气阶段产生的MnO2,可继续回用到反应体系做催化剂和吸附剂使用,而铁氧体反应阶段产生的铁氧体污泥,安全无毒,可外销作磁性材料,实现废物的综合利用。