【摘 要】
:
Poor cycle performance and obvious capacity decay are the main reasons which hinder lithium metal secondary battery,such as Li-Air battery and Li-S battery,towards commercial application at present[1]
【机 构】
:
School of Chemical,Engineering and The Environment,Beijing Institute of Technology,Beijing,China,100
论文部分内容阅读
Poor cycle performance and obvious capacity decay are the main reasons which hinder lithium metal secondary battery,such as Li-Air battery and Li-S battery,towards commercial application at present[1].In order to improve the unitary performance of lithium metal battery,the optimal employed condition should be investigated for lithium anode.
其他文献
The oxygen molecule can spontaneously dissociate into two O atoms on silicene surface and eventually the O-adsorbed silicene will degrade to form Si02 under ambient conditions[1].Thus,this naturally r
随着能源和环境问题的日益突出,新能源和新的能源转化与储存技术越来越受到研究者的重视,而水氧化反应就是众多清洁能源体系中的关键反应之一(4OH-→O2+2H2O+4e-,碱性).它是氢能源体系中水裂解的核心步骤,也与各种可再生能源器件,如太阳能电池,金属-空气电池和燃料电池等密切相关.
One of our research topics in recent years focused on spatiotemporal dynamics and control of sulfur electro-deposition during oxidation of sulfur(-Ⅱ) species,that possibly benefit sulfur abatement in
燃料电池是利用电化学反应,将存储在燃料中的化学能高效率、低污染的转化成电能的发电装置,能量转换效率高达60 %-80 %,其利用燃料与氧化剂分别在电池的两极发生氧化还原反应,只要燃料源源不断地持续供给,就可一直提供电流.因为燃料的化学能转换为电能的过程不受"卡诺循环"的限制,实际使用效率是普通内燃机的2~3倍,从理论上证实了燃料电池效率高的原理.以H2O2替代氧气作为阴极氧化剂的燃料电池,具有体积
H2O2基燃料电池具有高效、清洁、易操作及安全性高等优点.H2O2电还原催化剂的性能及稳定性直接关系到H2O2基燃料电池性能的提升.贵金属Pd基催化剂对于H2O2电还原反应展现了很好的催化活性和选择性.将贵金属分散担载在某些载体上可以降低贵金属用量,提升其利用率.本文研究了以SnO2纳米棒为担载体,釆用两种不同的方法(化学还原法[1-2]和溶剂热还原法[3])制备Pd/SnO2催化剂,考察了制备方
随着化石燃料能源匮乏和环境污染等问题相继出现,人们对清洁能源给予了更多的关注.其中最具潜力的清洁能源之一便是氢能,它具有高效、清洁、安全及可持续性等优点.电解水是最推崇的制式,早期常用贵金属(如Pt等)作为电解水的阴极材料[1],而贵金属较高成本成为制约制氢工业发展进程的重要因素.为了降低阴极材料的成本,常采用镍基合金来代替贵金属,因镍基合金具有高催化活性、循环寿命长、较低析氢过电位等优势[2,3
Electrochemical energy conversion devices ranging from fuel cells to metal-air batteries demand effective electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)[1].In pa
The insertion/extraction type anode materials,due to the high reversibility and high energy efficiency,have been considered to be the most promising anode materials.As the typical representative,graph
近年来,导电高分子因其可逆的氧化还原特性,引起了学者们的广泛关注.聚苯胺(PANI)作为一种聚合过程简单、环境稳定性好的导电高分子,逐渐成为金属腐蚀科学领域研究的热点,研究表明,聚苯胺对金属的防护主要是在金属表面形成钝化膜,阻隔腐蚀介质对金属的浸透[1],但单一的聚苯胺不易分散,抗划伤性差,常与环氧树脂和无机纳米金属氧化物掺杂,如Fe3O4,ZnO,TiO2等,提高其耐蚀性能.
Hydrogen is a clean energy carrier and is considered as a promising candidate to solve energy issues due to its highest energy density(143 kJ/g) [1].The most effective way to create hydrogen is the sp