微波辅助晶化制备MOR沸石膜及其渗透蒸发乙酸脱水

来源 :第九届全国膜与膜过程学术报告会 | 被引量 : 0次 | 上传用户:yuanxb2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  MOR沸石分子筛(丝光沸石,Mordenite,简写MOR),是人类认识最早的沸石分子筛之一。具有适中Si/A1摩尔比(5~10)的MOR沸石分子筛构成的MOR沸石膜不仅拥有良好的耐酸性,同时保持高的亲水性,此外,其孔道结构体系适宜水分子透过,适用于有机物脱水及苛刻酸性环境下乙酸等有机物脱水,是一种具有较大发展潜力的耐酸透水沸石膜材料。微波辅助晶化制备沸石分子筛是自20世纪80年代末开始并发展起来的一种新的合成方法[1,2]。与传统加热方法制备沸石分子筛相比,微波加热时热源来自合成液内部,加热均匀,速度快,加热效率高,有利于大大缩短产品合成时间和改善及提高沸石分子筛结晶度,此外微波加热能耗低,在绿色化学方面具有重要潜在应用价值[3]。由于微波加热技术具有显著缩短晶化时间等优点,吸引了大量的研究者探索和采用微波辅助晶化制备沸石膜。最初,研究者们采用微波辅助晶化的方法成功制备出NaA[4],sodalite[5],FAU (NaX和NaY)[6,7],MFI (ZSM-5和silicalite-1)[8,9]沸石膜。然而,微波加热技术在制备MOR沸石膜方面的报道较少。近期,Zhu等人[10]报道了利用一个合成溶胶在微波辅助晶化下合成出高性能的MOR沸石膜,该合成溶胶H2O/SiO2摩尔比为35,其含水量低,在配制过程中易发生凝胶结块,同时所用药品使用量较大。与之对比,稀溶液具有合成液易配制和药品使用量少优点。因此,探索稀溶液下水热晶化制备MOR沸石膜是非常有意义的。对于微波辅助晶化制备沸石分子筛材料过程中,微波加热促进晶体成核和晶体生长,且有利于晶体均匀生长。另外,F-作为矿化剂也能加快晶体生长速率[11,12]。因此,采用含氟稀溶液在微波辅助晶化条件下有望制备出高质量的MOR沸石膜。本文采用微波辅助晶化的方法,以无模板剂含氟稀溶液为合成液(H2O/SiO2摩尔比为120)在廉价α-Al2O3载体上制备MOR沸石膜,并将其应用于渗透蒸发分离90 wt%乙酸/10 wt%水体系。
其他文献
针对传统制膜过程用到大量难回收的有机溶剂和致孔剂,造成环境污染,膜孔径分布较宽且膜缺乏响应性等问题,本文基于仿生学的思想,以氯化锌水溶液为溶剂,制备一种窄孔径分布pH响应性仿生过滤膜.首先通过废旧蚕丝均相接枝聚丙烯腈得到铸膜液,然后将其放入水的凝固浴中,钙离子和氯离子逐渐扩散到水中,蚕丝蛋白和聚丙烯腈发生相转变成膜.钙离子和氯离子起到致孔的作用,而蚕丝蛋白和聚丙烯腈发生微相分离,在其界面也形成离子
溶液相转化法是商业化聚合物微孔膜的主要制备方法.成膜过程中聚合物固含量一般在15-20wt%左右.固含量过低时,铸膜液成膜性较差,膜孔隙率较高,力学强度差;或无法成膜.而对于一些反应性聚合物如4-氨基苯并-15-冠-5与氯甲基化聚砜体系在反应过程中,即使固含量较低(5-10wt%)时,由于交联作用也易于形成凝胶态直至成为不溶不熔聚合物,无法采用传统相转化法制膜.本文报道一种反应控制相转化成膜方法,
为了进一步提高PVDF膜的抗压实、耐污染等综合性能,我们通过水解、焙烧和硫酸化方法制备了多孔YxFeyZr1-x-yO2固体超强酸包覆TiO2纳米管(SYFZr-TiNs),然后填充到PVDF中后通过相转化法制备成在膜中拥有众多微反应位的SYFZr-TiNs/PVDF膜.这些膜中的微反应位环境均匀分布在PVDF膜中表现出光催化和超强酸特性,从而可以分解膜表面的有机物、微生物和无机固体悬浮物,并增强
C-H键的活化或氧化始终是有机合成面临的挑战.特别是环己烷液相氧化法制备环己酮和环己醇(KA油),因其转化率低(3-5%)、选择性低(75-80%)、能耗高、高污染,是国际公认的效率最低的大型化工工艺,严重制约了尼龙等相关产业的发展.如何提高环己烷的转化率和KA油的选择性一直是工业界和学术界面临的难题.本文以导电良好多孔金属钛膜作为基膜,采用溶胶凝胶法原位负载VOx纳米结构,构筑VOx/Ti电催化
氧化石墨烯独特的单原子层结构和丰富的含氧官能团为该类膜的制备提供了条件,采用压力过滤自组装法以聚醚砜超滤膜为基体制备了氧化石墨烯膜,并通过分别与乙二胺、丙二胺、间苯二胺交联来控制不同的层间距。运用扫描电子显微镜、傅里叶变换红外光谱、接触角、X射线光电子能谱、X射线衍射等多种手段研究了不同层间距氧化石墨烯膜的结构和性质,表征发现氧化石墨烯膜有良好的叠层结构,并且二胺单体在层间交联形成了稳定的共价键。
锆钛酸铅(PZT)微孔膜具有良好的压电性能,在膜两端施加交流电可以使其产生机械振动.振动产生的超声波可以防止污染物在膜表面堆积,从而起到抗污染的效果.本实验以PZT微孔压电膜为支撑体,在其表面制备了一层碳纳米管-氧化铝复合导电超滤膜,这层膜不仅可以提高复合膜分离精度,而且可以作为电极起到导电作用.研究表明,当导电层中碳纳米管与氧化铝质量比为1∶1,气氛保护下烧结温度为600℃时,制备的复合膜平均孔
金属有机骨架(MOFs)膜因其优良的性能,是当今膜领域的研究热点之一.UiO-66是一种以Zr为金属中心、对苯二甲酸(H2BDC)为有机配体形成的刚性MOFs材料,具有良好的热稳定性并可在水、DMF、苯或丙酮等溶液中保持结构稳定,同时还具有很高的耐酸性和一定的耐碱性,克服了多数MOFs材料水热稳定性以及化学稳定性差的缺点,故UiO-66系列膜是很好的MOFs膜研究对象.但是由于UiO-66系列膜生
T型分子筛具有菱钾沸石(OFF)和毛沸石(ERI)的共生晶型,有效孔道尺寸为0.36 nm×0.51 nm,硅铝比为3-4,对酸性环境下的有机溶剂脱水体系表现出良好的稳定性.近年来,有关中空纤维陶瓷膜的研究受到广泛关注,该类膜的直径可达1mm以下,由其所构建的膜组件装填膜面积高达1000 m2/m3以上.另外,四通道中空纤维支撑体具有交错连接的结构,其断裂负荷显著增强,是相同条件下单通道中空纤维的
陶瓷膜具有耐化学腐蚀、耐高温等优点,被广泛应用于污水处理、海水淡化及化学与石油工业等领域。常见的陶瓷膜构型主要有管式和平板式,但因较低的装填密度(< 250 m2/m3),导致设备投资过高。近年来,陶瓷中空纤维膜由于装填密度高(可达1000 m2/m3)、传质阻力低等优点,受到人们的广泛关注。然而在实际应用过程中,常规的陶瓷中空纤维仍存在机械强度低、微结构单一等不足。本文采用相转化和高温烧结相结合
含油废水广泛产生于涉油工业和日常生活,成为全球范围内新的挑战.膜分离技术处理含油废水时,油污染是限制分离通量和分离效率的首要问题.制备超浸润、高通量、抗污染的分离膜来实现含油废水(乳化油水和油水混合物)的快速、有效分离己成为处理含油废水公认的有效手段.基于一维纳米材料单壁碳纳米管制备的纳米级厚的超浸润、超薄多孔膜能实现乳化油水的超快、高效分离.得益于其超薄的膜厚度,该类膜展现出高达30,000 L