【摘 要】
:
本文采用三维数值模拟方法,研究了阁楼形腔内自然对流对腔体高宽比的依赖。讨论了不同高宽比的腔体内瞬态自然对流发展过程的异同,分析了高宽比对充分发展阶段流态的影响,给出了流态间演化的临界瑞利数随三角腔高宽比的增大而增大。
【机 构】
:
北京交通大学土建学院,北京海淀区100044
论文部分内容阅读
本文采用三维数值模拟方法,研究了阁楼形腔内自然对流对腔体高宽比的依赖。讨论了不同高宽比的腔体内瞬态自然对流发展过程的异同,分析了高宽比对充分发展阶段流态的影响,给出了流态间演化的临界瑞利数随三角腔高宽比的增大而增大。
其他文献
采用直接数值模拟,对小肋的减阻机理进行了研究。通过对瞬时、平均、统计流场的分析,结果表明小肋结构降低了粘性底层的速度脉动,诱导产生了流向涡对结构,使得湍流脉动趋向于粘性底层外层,减小了近壁处的雷诺应力强度;利用速度-涡量相关性分析,分析了湍流边界层中的相关结构,流向涡和低速条带结构清晰可见,小肋结构使得流向涡向边界层的完成发展,抑制了流向涡与避免的强摩擦作用,小肋结构干扰了边界层低速条带的形成与展
在引入对称性因子和线性速度梯度变化假设基础上,我们利用质量守恒、动量守恒和牛顿第二定律建立了一个可预测任意密度比和一般加速历史下瑞利-泰勒不稳定性后期混合宽度h1,2演化的常微分方程(这里h1(2)表示重(轻)流体混入轻(重)流体的混合宽度),其正确性被大量实验确认并预言:h1相对于h2的演化具有更大的不确定性,这与已有实验观察一致。
缝隙-台阶结构是飞行器防热瓦上常出现的一种危险结构,目前飞行器气动力预测常常不考虑这种结构对飞行器整体气动力产生的影响,然而本文的计算显示,缝隙-台阶结构能够产生明显的阻力。本文以尖劈外形为基础,分析了缝隙-台阶的出现对于尖劈上表面气动特性的影响。即使台阶高度远小于边界层的厚度,台阶处也能产生一道激波,致使台阶处产生明显的压阻。随着台阶高度的增高,压阻变大,尖劈上表面总阻力增加,缝隙-台阶结构产生
对固定于水平湍流槽道底面的方块,采用DES(Detached-Eddy Simulation)模拟其周围的流动情况,获取其湍流速度场和压力场的一阶和二阶统计量以及拟序涡结构,尤其是尾涡脱落信息,并与已发表的实验研究结果等做必要的对比分析。结合所得速度场数据,利用正交本征分解(POD,Proper OrthogonalDecomposition),对流场进行重构,分析方块周围瞬态流场中主要的含能涡结
本文使用数值计算的方式进行Poiseuille槽道湍流中应变率张量Sij的拉格朗日时间自相关研究。关于湍流中应变率张量Sij的拉格朗日时间自相关,已有的研究(Yu and Meneveau,PRL 2011)证实,在均匀各向同性湍流中,采用各子区域的当地Kolmogorov时间对Sij的拉格朗日时间自相关函数(以下简称自相关函数)进行时间无量纲化后,不同子区域的自相关函数的下降曲线会重合在同一条曲
本文针对展向旋转槽道湍流开展了一系列的直接数值模拟。通过对这些数据的分析,我们再现了之前报道过的平均速度2Ω线性区。此外,我们还对流向速度脉动的高阶矩,雷诺剪应力,湍动能生成项等开展了研究,结果发现这些统计量在不同旋转数下也具有线性律。其中,雷诺剪应力的线性系数为1,湍动能生成项的线性系数为-2Roτ。通过对雷诺剪应力的线性律的进一步分析,我们还可预测旋转槽道湍流的完全层流化状态对应的旋转数Roτ
本文以宽高比的对流腔为实验对象,研究了湍流热对流中的高阶流动模态。作者发现在的对流腔中,一阶模态(对应大尺度环流LSC)起主导作用,高阶模态强度很低。而在停滞/反转的时候,二阶模态主导整个流动。我们在实验室上第一次给出大尺度环流反转的动力学过程。同时作者还发现通常所指的停滞并不是整个流动的停滞而仅仅是一阶模态(LSC)的停滞。作者还发现了一阶模态更有利于热传递。
螺度是三维正压流动(在适当边界条件下)的理想守恒量.在不可压缩流动中可体现各种效应[J.-Z.Zhu,Phys.Fluids 26,055109(2014)].当流动二维化但仍有三个分量,即(θ)z=0(只依赖与x和y坐标或说沿z方向平均)时,二维平面外的分量uz-uzz=θz是被动地为二维平面内水平流动uh=v所移流的,成为Prandtl数v/κ=1的不可压缩二维被动标量问题:(θ)tθ+v·▽
耗散场的统计特性不仅决定了Rayleigh-Bénard(RB)系统的传热效率Nusselt数(Nu),而且与湍流运动的局部脉动紧密联系。本文采用直接数值模拟(DNS)的方法,在宽高比的二维(2D)对流槽内对不同的Prandtl数(和)下的RB对流进行了计算。数值模拟的Rayleigh数(Ra)范围为,计算结果与Grossmann-Lohse理论符合良好。我们将流动的物理空间分为边界层(或近壁区)
热对流现象是自然界运动中的基本物理现象,它广泛存在于天体、太阳、地球地幔、大气环流和海洋环流等自然界中,以及核反应堆堆芯冷却系统、化工产品生产和电子元件设计等工程应用领域中.湍流热对流物理和流动特性的研究可以深化认识自然界中的对流现象,也可以对解决工程中的传热问题给出指导.Rayleigh-Bénard(RB)对流系统是研究热对流现象的最简单的物理模型之一.在RB对流系统中上下冷热底板上都存在边界