一种基于光流估计的海上运动视频去抖算法

来源 :第十一届和谐人机环境联合会议 | 被引量 : 0次 | 上传用户:luo665
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文提出了一种基于光流估计的海上运动视频去抖算法.首先引入平滑性约束,采用层次化块匹配方法计算基于层次块的光流,快速计算海上运动视频的近似光流场;然后利用基于光流估计的能量函数优化,实现海上运动视频的高效去抖动.实验表明,本文提出的算法在处理海上运动视频抖动上的有效性和高效率,可以用于海上运动视频的去抖.
其他文献
In order to improve the recognition rate and speed of face recognition, this paper proposes a face recognition algorithm based on Gabor featutre and projective dictionary pair learning.Firstly, we ext
Many large scale complex networks exhibit a scale free vertex degree distribution in a power law form.To better understand the mechanism of power law formation in real world networks, we explore and a
Published information provides us with the convenience of data analyses and knowledge acquisitions.However it also brings the publishers into the risk of disclosure.All the words, sentences, paragraph
One of the most important work to analyze networks is community detection.We present a dynamic community discovery method based on Visibility Graph.Firstly, we put forward related definitions of Visib
Cytoplasm segmentation is a subproblem of cervical smear image segmentation.Since the overlapping, complex morphology and other reasons, cytoplasm segmentation is a challenging problem.In this work, w
RNA secondary structure prediction is an open problem in bioinformatics.Comparative sequence analysis method is widely used in RNA secondary structure prediction.It takes a group of related RNA molecu
Most methods for detecting fingerprint reference point need to scan the image or orientation field pixel by pixel or block by block to determine whether it is a candidate reference point, which is ine
基于稀疏表示的L1跟踪方法近年来在视觉跟踪中获得了较大的成功.但其直接使用视额序列各帧内的像素值对模板和目标候选进行表示,而没有考虑到各图像块内部的深度特征信息.发现,在固定摄像头的视频监控场景中,通常可以找到一块区域,该区域中目标物体具有清晰、易于分辨的表观.本文在各视频场景内事先选定一块可以清晰分辨目标表观的参考区域用以构造训练样本,并构建了一个两路对称且权值共享的深度卷积神经网络.该深度网络
本文对现行开关滤波算法在脉冲噪声检测时间、检测精准度和恢复策略上存在的问题进行理论分析,提出一种递进的脉冲噪声检测算法(PIND),使噪声图像能够获得更好的恢复效果.首先,确定脉冲噪声与真实像素之间的灰度值界线b1和b2,根据这个界线区分出疑似点和真实点;然后,将噪声点从疑似点中寻找出来并判断噪声类型,存储在决策表G中;最后,根据决策表G中存储的噪声类型信息采用三种不同的恢复策略滤除噪声.对len
为了提高图像超分辨率算法对数据奇异点的鲁棒性,提出一种基于K均值聚类和支持向量数据描述的图像超分辨率重建算法.提出的算法分为训练和测试部分:在训练部分,首先在K均值聚类基础上用支持向量数据描述去除每类数据的奇异点,然后用主成分分析训练小波域近似子带和细节子带字典.在测试部分,首先根据同一场景高低分辨率图像近似子带相似这一现象,将待重建低分辨率测试图像的近似子带作为相应高分辨率测试图像的近似子带,然