【摘 要】
:
生物信息学是一门利用包括计算机技术在内的新机技术研究生物系统中有关信息采集及有关结构、规律的学科,目前因为比较多地涉及生物分子的相关信息,因此有时又可以称为分子生物信息学。随着信息技术以及系统生物学的不断进步,我们关注到细胞水平上的有关信息学问题,就是通过各种研究手段获得细胞的结构、功能和各种细胞生命活动的规律,为临床以及社会应用提供有效的信息,也可以称为细胞生物信息学。现在,随着纳米医学技术的发
【机 构】
:
东南大学生物科学与医学工程学院,生物电子学国家重点实验室,江苏省生物材料与器件重点实验室,江苏 南京 210009;苏州纳米科技协同创新中心,纳米药物与材料专业中心,江苏 苏州 215123
论文部分内容阅读
生物信息学是一门利用包括计算机技术在内的新机技术研究生物系统中有关信息采集及有关结构、规律的学科,目前因为比较多地涉及生物分子的相关信息,因此有时又可以称为分子生物信息学。随着信息技术以及系统生物学的不断进步,我们关注到细胞水平上的有关信息学问题,就是通过各种研究手段获得细胞的结构、功能和各种细胞生命活动的规律,为临床以及社会应用提供有效的信息,也可以称为细胞生物信息学。现在,随着纳米医学技术的发展,纳米尺度的观测技术越来越多的应用到细胞生物学领域,并为细胞生物信息的获取、加工、解释等提供了非常精确的手段和方法,如利用纳米颗粒实现药物靶向的药物呈递技术,用于生物传感的纳米材料和技术,基于微纳加工的纳米生物传感技术,实现活性肽类药物形貌结构调控的多肽分子自主装技术,等等。这些技术的发展为我们对细胞生物信息学的进一步认知提供了巨大的潜力空间。事实上,这些技术研究从理论、方法的提出到实际的应用之间还存在一段距离,目前大多数的纳米观测技术还处于实验室研究阶段。因此,建立在新概念基础上的纳米测量技术,一方面需要利用物理、化学、生物学中的最新研究成果来拓展现有的技术和方法;另一方面仍需要利用先进的仪器和方法提高现有技术的成熟度,以及积极地推进成熟技术在生物信息学中的应用。因此,纳米尺度下细胞水平上的观测技术无论是在理论上还是在技术设备上都需要更为深入的研究和发展。
其他文献
膜分离作为21世纪最具前景的高新技术之一,己在化工、环境、生物、医药、电子等各大领域发挥着工业改造的作用。通常,能耗高、产量低和寿命短三大问题始终制约着膜组件的应用。膜组件性能除了依赖膜材料性质,还取决于过程的操作参数和组件的几何结构。由膜单元放大至整个膜组件时,组件性能常常低于预期,原因在于膜单元的数量放大和膜组件壳体的几何放大产生了非理想流动。因此,寻求合适的方法研究膜组件非理想流动下的传递过
膜基催化反应主要是在催化反应过程中引入膜单元,利用膜的多孔、分离等特性,提高催化效率。基于膜的高精度筛分效应,实现超细催化剂与产品的原位分离,使生产过程连续化;将催化剂负载到膜上构建催化膜,通过膜表面特性调控、膜构型优化设计、新方法开发,制备高性能催化膜,实现反应-分离一体化;基于膜的均匀的微纳孔道,采用膜进行反应物料的分散,控制反应物料的浓度,提高反应物料的传质混合效率,提高反应的转化率、选择性
醋酸纤维素是研究反渗透(RO)和正渗透(FO)最早的材料,虽然醋酸纤维素膜较聚酰胺反渗透膜具有良好的耐氯、抗污染性能,但是醋酸纤维素往往具有低的水通量和盐截留,这限制了醋酸纤维素反渗透膜的广泛应用。本文在三醋酸纤维素膜内添加无机纳米粒子,考察膜材料水通量和盐截留的变化,并通过溶解-扩散模型研究其传质机理,研究了添加不同纳米粒子的三醋酸纤维素膜的基本传输性能-水/盐分配系数(Kw,Ks)、扩散系数(
膜分离技术由于其高效、节能、环保的特点,广泛地应用于水处理、食品加工、生物医药以及能源化工等行业。渗透性是多孔膜的主要性能之一。目前的研究主要集中在膜表面结构、膜材料以及扰流组件对膜渗透性的影响,而膜内部结构如膜孔形状对渗透性的影响罕有报道。本文提出了一种有效的简化模型,用于预测具有不同膜孔形状的多孔膜的渗透通量。研究将多孔膜简化为单个膜孔的规则阵列,以单个膜孔为研究对象。利用计算流体力学研究了不
A large amount of threonine mother liquor is produced during the production of threonine by fermentation,in which many impurities are intermingled,e.g,threonine,other amino acids,residual sugars and i
利用电学的方法来控制磁性材料中的自旋是自旋电子学走向应用的重要途径,我们研究了电学方法调控铁磁半导体和铁磁金属薄膜中的自旋特性。发现电流控制GaMnAs中的自旋翻转是各向异性的,这是因为Dresshaus 类型的自旋轨道耦合场是Rashba 类的三倍[1];当前对重非磁金属/铁磁/氧化物三层结构中电流翻转磁化的物理机理目前还有非常多的争论:到底是自旋霍尔效应还是Rashba 自旋轨道耦合效应的贡献
介绍复旦大学近年建立的原位多场耦合透射电镜平台。围绕金属材料电磁结构与性能关系,作者以原位电子显微学方法为主要手段,解决了由于透射电镜物镜存在强磁场而很难清晰分析金属磁性材料的微观结构的难题,突破了常规洛伦兹透射电镜的极限分辨率,自主建立了针对金属磁性材料的原位低温多场耦合电镜研究平台:低温可至12 K 的液氦低温;施加2 特斯拉的强磁场;施加300 伏的电压;同时引入六电极。尤为重要的是在施加上
Wearable electronic textiles that store capacitive energy are a next frontier in personalized electronics [1-3].However,the lack of industrially weavable and knittable conductive yarns in conjunction
The capabilities to tune the conduction properties of materials by doping or electric fields are essential for the design of electronic devices.However,in two dimensional materials,due to the absence