【摘 要】
:
透明电极是现代柔性器件中的重要组成元件,其在有机太阳能电池、有机发光二极管、有机光探测器、液晶显示和触屏等领域具有广泛的应用.目前研究中的透明电极材料有四类:导电聚合物、碳纳米管、石墨烯和导电金属网格.导电金属网格在四类材料中具有最高的优值系数,90%透过率下的方阻与ITO相当.但是导电金属网格制造成本和金属丝长径比以及柔性大面积化是现阶段急需解决的问题。在这里报告一种工艺简单及制造成本低廉的方法
【机 构】
:
南昌大学化学学院,南昌,330031 南昌大学化学学院,南昌,330031;江西省新能源化学重点实
【出 处】
:
2016年两岸三地高分子液晶态与超分子有序结构学术研讨会暨第十四届全国高分子液晶态与超分子有序结构学术论文报告会
论文部分内容阅读
透明电极是现代柔性器件中的重要组成元件,其在有机太阳能电池、有机发光二极管、有机光探测器、液晶显示和触屏等领域具有广泛的应用.目前研究中的透明电极材料有四类:导电聚合物、碳纳米管、石墨烯和导电金属网格.导电金属网格在四类材料中具有最高的优值系数,90%透过率下的方阻与ITO相当.但是导电金属网格制造成本和金属丝长径比以及柔性大面积化是现阶段急需解决的问题。在这里报告一种工艺简单及制造成本低廉的方法用静电纺丝的方法制模板,运用无电镀法在柔性基底上制备金属纳米线透明导电薄膜,并将其运用在太阳能电池中。静电纺丝可以得到长径比较大的纳米纤维,而无电镀法可以在低温条件下获得金属纳米线。
其他文献
本文合成了三类具有大平面共轭体系的分子,分别是萘嵌苯酰亚胺(QDI、HDI和ODI)、二聚苝酰亚胺DPDI和基于苝酰亚胺的梯形聚合物LCPT.研究了它们的光谱、电化学、自组装等基本性质,并尝试将其用于有机薄膜太阳能电池和场效应晶体管.这些化合物具有很强的吸收光谱,较低的LUMO能级,是一类很有潜力的电子受体.
电化学氧化还原刺激是一种清洁而简单的刺激方式。基于β-环糊精和二茂铁主客体相互作用,可以建立电化学氧化还原刺激响应体系。我们在对该体系的响应原理、结构、表征研究的基础上,设计了一系列具有电化学刺激应答功能的智能组装体1,2、凝胶、微凝胶,实现了电势响应的可逆组装与解组装,研究了药物或功能分子的电势响应可控释放,研究了微凝胶调控的乳液对生物催化反应中酶的循环利用。
基于氢键自组装的超分子液晶聚合物能够形成不同尺度的多级多层次的纳米有序结构,通过调控分子结构与含量等,可实现纳米结构尺寸、大小和排列等参数的可控,为纳米材料的功能化提供了很好的模板与依据,因此越来越受到广泛关注.含二茂铁基衍生物具有良好的氧化还原性能,在有机场效应晶体管、太阳能电池、传感器等领域有着非常广阔的应用前景与价值1,2.
近年来,有机金属卤化物钙钛矿太阳能电池因兼具低成本、溶液加工和优异的光电转换性能倍受关注,在过去短短5年时间里,钙钛矿太阳电池的能量转换效率已经从3.81%提高到20.1%.它的理论最大光电转换效率超过30%,将有望超过硅基太阳能电池.然而,钙钛矿层的结晶度以及薄膜的形貌对于器件性能有着举足轻重的影响.因此,优化钙钛矿薄膜制备工艺流程,调控晶体薄膜的覆盖性及均匀性,减少针孔的形成,获得连续、无针孔
共轭聚电解质的极性基团可以在电极/活性层界面产生有利的界面偶极,从而有效减小太阳能电池的界面势垒(1-3).因此一系列基于PFN的共轭聚电解质根据极性胺数目的比例合成了PFN30,PFN50,PFN70和PFN100,目的是研究极性基团的数量对界面偶极的影响.界面偶极很好地被调控仅仅通过控制极性胺的数目,功函数据进一步证明随着极性胺含量增加,修饰ITO的PFN衍生物功函逐渐降低.另外,增加PFN衍
液晶分子目前已经成功的应用于有机太阳能电池活性层第三组份,其不仅能提高活性层给体的结晶性,还能改变活性层的薄膜形貌.目前设计合成的液晶分子主要是联苯液晶和盘状液晶小分子,其对可见光的吸收范围窄且吸收系数低等缺点限制了活性层对光的充分吸收,从而影响有机太阳能电池器件性能.这里设计合成了一种新型的含氟给受体单元相连的棒状液晶小分子DFBT-TT6,其不仅吸收较宽,而且在短波段也具有非常强的吸收,将其掺
金属有机液晶(Metallomesogens)由于结合了金属离子和液晶两方面的特性,赋予其比有机液晶更为丰富的多种性质,如热致变色性、光电磁效应等,近年来引起了科学家的广泛关注.课题组近期对引入偶氮苯介晶基元的金属有机液晶开展了一些研究工作,进一步通过无溶剂热解这类金属硫醇盐液晶前驱体,可控制备得到液晶基元介导的多种形貌的金属及金属硫化物纳米材料,如银纳米盘、金纳米粒子、以及硫化亚铜纳米线和多层级
锂离子电池因其能量高、充放电性能好、使用寿命长等特点已经被普遍认为是有效的储能器件之一,最有可能应用于电动汽车等现代化的电子设备中.然而除去能量和功率密度,安全稳定性是现阶段阻碍其发展及应用的一大关键性因素.同时,为了顺应社会对可折叠便携式电子产品的需求,可制备成任意尺寸和形状的柔性锂离子电池备受瞩目.聚离子液体除具有离子液体高电导率,好的电化学性能外,其含有单一可移动的离子的特性可以缓解电极的极
溶液法合成的ZnO表面带有很多缺陷陷阱,这些陷阱将成为电子和空穴复合中心,在很大程度上影响了整个器件的光电转化效率.利用水热法合成了不同形貌的CdS纳米晶,包括花状(F-CdS)、支化状(B-CdS)、小尺寸球状的(S-CdS)3、并将这些无机纳米晶用来修饰敏化ZnO纳米粒子,分别形成ZnO/F-CdS,ZnO/B-CdS和ZnO/S-CdS杂化纳米复合材料电子传输层.和ZnO纳米粒子纳米粒子电子
聚合物太阳能电池越来越受到人们的广泛关注,基于聚合物给体和富勒烯受体的电池效率已经达到了11%.在反向太阳能器件中,氧化锌作为一种非常常用的材料也有近期频繁的应用.在这里报告一种乙二硫醇掺杂的氧化锌通过原位生长的方法制备电子传输层的方法,有效的提高了反向聚合物太阳能电池的效率.氧化锌与乙二硫醇中的巯基的强相互作用有利于形成平滑均一的薄膜。同时,乙二硫醇也钝化了氧化锌的表面缺陷以及提高氧化锌的电子迁