基于STAR-CCM+的智能格栅空气动力学分析

来源 :2017 Siemens PLM Software大中华区用户大会 | 被引量 : 0次 | 上传用户:zhuxin1109
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文以智能格栅为研究对象,基于某款SUV车型建立仿真模型,通过流体力学仿真软件STAR-CCM+对模型进行数值仿真分析;基于某款轿车进行风洞试验,探究智能格栅对降低风阻的作用.通过两车型的仿真和试验,智能格栅都能大幅降低风阻系数,且具有类似的降阻曲线,提升整车的燃油经济性.
其他文献
STAR-CCM+BSM提供了对电芯/电池模组/电池包做电化学-温度场耦合分析的能力.对电池包散热能力的设计是确保电芯温度一致性的关键,从而使电池包轻量化.
民用飞机气源系统根据工作状态选择从发动机、APU或高压地面气源引气,为空调、机翼防冰、发动机起动、燃油箱惰化及水箱增压提供气源,以满足各用气系统的压力、温度和流量需求,系统设计包含左右两侧发动机引气,且互为备份,单侧发动机引气可满足座舱增压和单套空调组件、两侧机翼防冰、燃油箱惰化及水箱增压同时工作时的用气要求.
汽车行驶中的空气阻力能够影响纯电动汽车续航能力,特别是高速行驶的工况.本项目对Tesla旗下的Model S车进行点云逆向,应用西门子公司的STAR-CCM+软件,针对离地间隙、轮胎旋转、有无胎纹等因素,设计不同工况对其进行了详细的外气动特性仿真分析.仿真得到该车型不同工况下的整车阻力系数及局部流场数据,并分析了其流动机理.可为当前国产汽车的气动外形设计提供借鉴,具有实际参考意义.
从设计高效的离心水泵、设计海下热交换器、以及改善叶片冷却效率提升燃气轮机性能三方面介绍了更快更好的进行能源工业产品设计的方法。
现代燃气轮机为了获得更高的热效率,透平(涡轮)的入口温度不断提高;高温条件下,必须采用复杂的冷却技术来保持透平热端部件的正常工作.
文章首先介绍了STAR-CCM+电子散热工具包,然后分析了利用设计探索求解几何的逆问题,最后介绍了求解边界条件的逆问题。
为提高纯电动汽车前端冷却模块有效进风量满足冷却系统需求,基于ISIGHT优化平台集成STARCCM+软件,采用试验设计(DOE)方法,将”散热器进风量最大”设为优化目标,分析导风板关键几何参数对进风量的影响.实际机舱CFD计算结果表明,优化后的导风板能将散热器进风量提高6.3%.
电动汽车与传统汽车的主要区别包括外造型:前格栅面积小、平整的底盘;结构:主能源系统、电力驱动系统和辅助控制系统,即电池、电机和电控的三电系统;以及综合性能:无污染、噪声低,能源效率高。
为了降低GDI发动机微粒排放,燃油喷射压力有进一步提高的发展趋势.使用STAR-CD软件建立某2.0L直喷发动机的数值计算模型,进行喷雾模型标定,随后研究了高燃油喷射压力下缸内混合气形成情况,对比了喷射压力对混合气形成质量的影响.研究结果表明,采用高压喷射后燃油的雾化蒸发与混合气分布均匀性有明显的提高.
本文通过Star CCM+软件对排水泵流场进行仿真分析,分析得到在残水状态下,排水管出口处水流往复运动.通过实验测试得到,排水泵的噪音周期与水流往复运动的周期一致.在排水泵出口处增加止回阀,排水泵出口处的水流不能往复运动,排水泵周期性声音消失,声品质提高.