【摘 要】
:
C/C复合材料中引入原位自生的炭纳米纤维,其力学性能和导热性能都得以大幅度提升.纳米纤维的引入,可以改善基体炭的结构;可以改善炭纤维和基体炭的界面结合状态;炭纳米纤维本
【出 处】
:
第十二届设计与制造前沿国际会议(ICFDM2016)
论文部分内容阅读
C/C复合材料中引入原位自生的炭纳米纤维,其力学性能和导热性能都得以大幅度提升.纳米纤维的引入,可以改善基体炭的结构;可以改善炭纤维和基体炭的界面结合状态;炭纳米纤维本身又是高强度、高导热性的增强相.在以上因素中,究竟是何者对炭纳米纤维增强C/C复合材料的性能提高占主导,国内外近年来尚无人进行研究.本项采用材料设计的方法,以炭纤维表面原位定向生长炭纳米纤维为基础,进而CVD法制备炭纳米纤维增强C/C复合材料,通过对复合材料进行力学性能测试,微观结构观察和数值仿真分析,旨在研究纳米纤维增强C/C复合材料构件的增强机理,为该复合材料构件的制备提供理论依据和工艺参考.
其他文献
针对机械关键零部件因摩擦磨损导致的快速失效难题,基于多因素协同增强减摩润滑设计思想,本项目在油润滑条件下,将表面织构、固体润滑膜和微纳颗粒润滑技术复合,实现油润滑、
轮胎磨损是动态长期的过程,磨损的微小减少也会大大延长轮胎使用寿命,因此轮胎磨损相关问题一直是学术界和工程界的研究热点.轮胎的接地性态是胎面磨损的发生界面,对轮胎磨损
MXene是一种新型的类石墨烯2-D纳米材料,有望在微电子、信息、能源、材料和生物医药等领域获得重大应用.本研究首先通过化学刻蚀三元层状MAX相陶瓷材料的方法制得结构可控的M
针对高压重载是航空、重工、先进制造装备等领域发展过程中无法避免的苛刻工况条件,极端重载工况将导致润滑剂的寿命急剧缩短并产生润滑失效,而生物降解性能差的矿物油基润滑
与实验测量相结合,实现随机粗糙面数字化表征及重构;在分析刚性凸头单次/多次冲击接触弹塑性金属薄膜的接触-分离基础上,建立微悬臂梁和覆膜基底间粗糙面重复冲击接触—分离
减摩节能是工程领域的共性问题.近年来,超低摩擦技术引起了各国学者的广泛关注,但仍未见令人信服的理论来解释这些超低摩擦现象.本项目拟借鉴岩体超低摩擦效应原理开展超低摩
本项目针对下一代超大规模集成电路制造对于无损伤抛光的要求,以新型抛光介质材料合成作为切入点,设计并可控合成具有不同微观结构的核壳包覆型有机/无机复合磨料.在常规化学
目前,相关研究已经表明:表面微纳米结构均有助于提高光学效率.但是目前设计的表面结构形貌单一,尺寸以亚微米或纳米结构为主,在采用表面结构提高光学效率的研究中遇到了功能
智能结构是在基体材料中融入传感器、驱动器和微处理控制系统等所构成的存在多场耦合作用的复杂系统.其可靠性分析和设计既不同于传统的结构可靠性问题,也不同于一般电子系统
缩孔、缩松和夹渣等是铸造过程中的常见缺陷,此类非连续性缺陷显著地降低了铸件材料的局部机械性能,对铸件的服役性能和疲劳寿命也有着极大的影响,目前尚无统一的标准的或广