【摘 要】
:
我们利用压缩二氧化碳调控在离子液体[Bmim]OAc中制备了研究了Pd/chitosan催化剂,可以高效催化苯乙烯加氢反应(表1),经过5次循环,催化剂的活性没有损失。所制备的催化剂的高的活性主要可以归因于Pd的高分散性和材料的更加松散的结构。本工作为发展更加绿色和可控路线制备生物大分子支持的纳米催化剂提供了新思路。
【机 构】
:
北京林业大学材料科学与技术学院,北京,100083 中国人民大学化学系,北京,100872
论文部分内容阅读
我们利用压缩二氧化碳调控在离子液体[Bmim]OAc中制备了研究了Pd/chitosan催化剂,可以高效催化苯乙烯加氢反应(表1),经过5次循环,催化剂的活性没有损失。所制备的催化剂的高的活性主要可以归因于Pd的高分散性和材料的更加松散的结构。本工作为发展更加绿色和可控路线制备生物大分子支持的纳米催化剂提供了新思路。
其他文献
Cd(Ⅱ)作为危害严重的重金属离子之一,随着废水被排放到环境中,时刻危害着生态环境及人类的身体健康.废水中Cd(Ⅱ)的治理越来越受到人们的广泛关注.本文以羧甲基-β-环糊精(CMCD)为客体分子,用水热法制备羧甲基-β-环糊精插层水滑石(CMCD-LDHs).并通过X射线衍射和红外光谱对制备的类水滑石进行表征.研究了CMCD-LDHs处理废水中的Cd(Ⅱ)的最佳吸附条件以及吸附规律.当Cd(Ⅱ)的
蛋白结构稳定性是决定蛋白质在层析过程中蛋白的吸附取向、构象变化以及最终层析保留行为的关键因素.本研究突破以往蛋白液固界面蛋白结构表征的瓶颈,以蛋白质分子表面和内部的氨基酸质子与氘交换速率差异机制为基础,利用核磁共振技术(NMR)以及石英晶体微天平(QCM),根据核磁共振TOCSY谱图氢信号损失程度以及蛋白吸附层的刚性变化,评价了离子交换过程中蛋白质柔性介导的层析保留行为.结果显示,蛋白柔性增强将导
采用氧化铝吸附色谱柱将380CST燃料油分成饱和分、芳香分、胶质和沥青质四组分;用元素分析、凝胶色谱、红外光谱和核磁共振等方法对四组分进行分析和结构表征;测定了燃料油及其组分模拟油的油水界面张力,考察了水相pH值、盐浓度对燃料油及其组分模拟油油水界面张力的影响.结果表明,380CST燃料油中芳香分含量最多,沥青质和胶质含量约30 %.沥青质比胶质含有更多的杂原子,平均分子量较大,氢碳原子比n(H)
次磷酸钙作为一种较为常见的次磷酸盐[1]具有非常多的用途.在化工行业中可以用作腐蚀拟制剂、阻燃剂[2]、填充剂 [3] 、化学镀镍助剂、并可做抗氧化剂、化学分析剂等;在食品行业中可用作食品添加剂;在医药中可用作动物营养补充品[4].次磷酸钙和次磷酸镁联合使用可以治疗肥胖症[5]为了得到纯度更高、可食用的次磷酸钙,可 用氯化钙与次磷酸钠转化来制备.该工艺的设计、优化及控制需要相平衡数据的支持和相图的
CO2是引起温室效应的主要气体,因此如何高效地捕集CO2成为全球广泛关注的热点问题.离子液体由于其蒸汽压低,可调控性高等独特性质在CO2吸收方面表现出不同于其他吸收方法的优良特性,咪唑型离子液体就是其中一种具有代表性的离子液体.但是,以1,3-二烷基咪唑为阳离子的咪唑型碱性离子液体吸收CO2存在阴阳离子两种吸收路径,而阳离子吸附路径存在着CO2吸收量低,难以脱附等缺点.我们提出通过增大咪唑阳离子位
BODIPY类荧光染料具有很高的发光效率和良好的光稳定性,作为生物传感染料或光电功能染料,具有重大的应用价值.但是这类染料衍生物的发光光谱主要集中在可见区,长波长区域尤其是近红外区的衍生物种类稀缺,而且合成或结构修饰困难,成为制约其广泛应用的主要瓶颈.本课题组,通过延展共轭体系与调控分子内电荷转移策略的结合,开发了一系列长波长区域(红光到近红外区)发光波长可调谐,发光效率高,稳定性好的染料.而且它
目前,废水中的重金属污染是一亟待解决的问题,其中以砷为典型元素,其浓度过高会对人体健康造成危害.本文采用共沉淀法合成了(Mg:Mn=1:1)锰掺杂镁铝水滑石,并对其结构进行表征,研究其吸附五价砷的性能.采用X射线衍射、扫描电镜、红外光谱、BET、热重等手段对该水滑石进行了表征.XRD、FT-IR、BET、TG-DTA、SEM等表征的结果证实了合成的Mg2Mn2Al2-Cl-LDHs具有水滑石层状结
本文介绍了以丙三醇为原料,使用代谢的工程用大肠杆菌通过生物合成的路径制备高纯度的2,3-丁二醇,并以2,3-丁二醇和几种可再生的生物基单体合成了一系列环境友好的线性可交联的生物弹性体.通过引入含有侧甲基的2,3-丁二醇,该生物弹性体的结晶行为受到抑制,最终呈现出完全无定型态.另外,将该生物弹性体与纳米二氧化硅复合,其力学性能可以得到显著的增强.体外降解实验证明了可以通过交联来调节该生物弹性体的降解
乙醇是常见的重要有机化工原料,目前在生产中通常采用精馏的方法从水相中分离乙醇,但精馏工艺具有能耗大且不能分离共沸物的缺点.渗透汽化膜分离技术具有节能及无污染的优点,可以有效地分离共沸物,在乙醇水的分离过程中具有很好的应用前景.优先透醇膜分离乙醇水的过程受限于偏低的膜通量和分离因子.对乙醇水分离的机理的研究过程中发现,乙醇和水的活度直接影响了两组分透过膜的推动力,进而可以影响膜的通量和分离因子.本文
螺吡喃衍生物有好的着色能力和抗光致疲劳能力,在数据记录和储存、光控开关、显示器和非线性光学等方面有着广泛的潜在应用前景,但其作为电存储材料的应用和理论研究仍有待进一步探索.以9‐芴酮为原料合成了芴基萘并螺吡喃1,化合物结构经NMR、MS和单晶X射线衍射表征.热重分析显示化合物具备良好的热稳定性,分解温度250℃(5 wt%失重温度);电化学分析计算化合物的HOMO、LUMO能级可以为‐5.56 e