论文部分内容阅读
在地理等特有领域概念关系抽取过程中,由于其有限的样本标注资源,难以应用深度学习等大规模知识图谱构建技术.迁移学习方法能够利用开放域文本语料资源,帮助解决目标领域训练数据较少的问题.本文针对地理领域文本的时序性特征,利用长短期记忆(LongShort-Term Memory,LSTM)神经网络,构建了基于词特征和句子特征的概念关系抽取模型,针对地理概念关系语料缺乏的问题,提出了基于LSTM的迁移学习方法,将开放领域的知识迁移到地理领域,通过权重迁移和重训练调整,显著提升了地理领域概念关系抽取的准确度.