【摘 要】
:
Recently,deep convolutional neural networks(CNNs)in single image super-resolution(SISR)have received excellent performance.However,most deep-learning-based methods do not make full use of low-level fe
【机 构】
:
Xidian University,University,Xi'an 710071,China
【出 处】
:
第六届中国计算机学会大数据学术会议
论文部分内容阅读
Recently,deep convolutional neural networks(CNNs)in single image super-resolution(SISR)have received excellent performance.However,most deep-learning-based methods do not make full use of low-level features extracted from the original low-resolution(LR)image,which may reduce the quality of reconstructed image.To address these issues,we propose a method which can connect the low-level features from almost all convolutional layers.Our method use the interpolated low-resolution image as input,employ many skip-connec-tions to combine low-level image features with the final reconstruction process,these feature fusion strategies are based on pixel-level summation operations.After merging the previous convolution features,residual images are used to di-rectly reconstruct high-resolution(HR)images.Experiments demonstrate that the proposed method is superior to the state-of-the-art methods.
其他文献
现今的大部分网络信息系统均采用基于口令的用户身份鉴别方式,用户口令的安全性直接关系到个人信息的安全性.目前口令分析挖掘的研究主要针对英文使用习惯的口令,并且也局限在一些常见的单词或姓氏上.本文针对中文语境下,主要是古诗、成语在口令中的使用情况,基于口令字符串的数据分析技术,提出了一种基于已知口令元的中文语境口令分析方法.通过将识别出的已知口令元视作单个口令自由度,计算给定攻击成功率下的自由度攻击成
Erasure codes are widely advocated as a viable means to ensure the dependability of key-value storage systems for big data applications(e.g.,MapReduce).They separate user data to several data splits,e
网络流数据是分析人员对网络运行状况进行评判的重要依据,但网络流数据的数据量庞大、数据维度较多以及分析层次多样会给分析人员带来认知困难,因此针对网络流数据的多层次性、主机关联性以及多元时变性等特征,提出多层次关联可视分析模型.该模型针对多层次性和主机关联性特征分别设计了宏观-中观-微观的多层次分析以及关联分析,实现了由整体到局部、由局部到个体以及由点到面的可视分析.根据上述模型并结合网络流数据的多元
To settle resource scarcity problem for Chinese-Vietnamese bilingual aligned corpus in metallurgy field,a method to Chinese-Vietnamese bilingual term extraction in metallurgy field based on a pivot la
为实现相似重复记录检测,提出一种基于One-Class SVM的分类检测方法.针对数据源中相似重复记录样本稀少的特点,将相似重复记录的检测建模为单分类问题;针对单一数据源的情况,根据记录中不同属性特征的类型不同,定义了字符串型、枚举型、连续型三种属性之间的相似性度量方法,将记录对之间的相似特征向量作为One-Class SVM分类器的输入进行检测;建立了以召回率、准确率、特征数量为目标的多目标特征
With the rapid development of location-based services,there is more and more personalized demand for route planning.The existing studies on route queries on time-dependent network to find the optimal
互联网逐步融入人们日常生活的各个领域,基于URL的窃取用户信息及互联网金融账户等恶意URL开始成为了一大安全隐患,已有的传统基于黑名单的恶意URL的检测方法,不能解决海量网络流数据中恶意URL的检测问题,使用离线机器学习的检测恶意URL方式的时效性不强,不能很好地及时对恶意URL进行检测.本文采用在线学习算法训练恶意URL检测模型,充分利用了在线学习算法的模型更新效率高、以及可以利用有限的计算机资
降低能耗开销、建设绿色数据中心,已经成为目前大规模数据中心的重要需求.在绿色数据中心中,如何使数据库系统在满足性能需求的前提下尽量地节约能耗,即如何提高数据库系统的能耗有效性,是目前研究的重点.数据库系统中的能耗有效性旨在使用更少的电能来提供相同的服务,例如:处理的事务数量、响应的I/O请求数量等等.能耗有效性越高,说明数据库系统可以用更少的能耗就能够响应同样数量的操作,换句话说,可以用更少的能耗
In this paper,an intelligent inventory management system for vending machines based on image recognition has been proposed.The outside image of a vending machine goods cabinet is obtained by a camera
We study the GroupBy implementation scheme widely used in distributed systems and databases.The GroupBy operation partitions a set of out-of-order records into groups.Due to the massive data size,many