A version of H(o)rmanders theorem for the fractional Brownian motion

来源 :International Conference on Random Dynamical Systems(2009年随机 | 被引量 : 0次 | 上传用户:pangdunpiwen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  It is shown that the law of an SDE driven by fractional Brownian motion with Hurst parameter greater than 1/2 has a smooth density with respect to Lebesgue measure,provided that the driving vector fields satisfy H(o)rmander’s condition.The main new ingredient of the proof is an extension of Norris’ lemma to this situation.
其他文献
  In this talk, we report our recent works on coloring and domination on graphs.In particular, we prove every graph has a semi coloring, which answers an open
会议
  The Laplacian matrix of the graph G is defined as L(G) =D(G)-A(G), where D(G) =diag(d(v1),d(v2),… ,d(vn)) and A(G) denote the diagonal matrix of vertex deg
会议
会议
会议
会议
会议
会议
  We consider a singular perturbation problem for the following system of nonlinear Schrǒdinger equations: -εΔu1 + V1(x)u2 = μ1u31 + βu1u22 in RN,-εΔu2
会议
会议
会议