【摘 要】
:
由于现有大多数有机电致磷光材料都具有发光自淬灭和载流子传输性能较差等问题,目前大多数的磷光器件都是在较低的掺杂浓度(<10%)下才能实现高效的磷光发射[1].此类器件的性能
【机 构】
:
吉林大学超分子结构与材料国家重点实验室,长春,130012
【出 处】
:
第八届全国暨华人有机分子和聚合物发光与光电特性学术会议
论文部分内容阅读
由于现有大多数有机电致磷光材料都具有发光自淬灭和载流子传输性能较差等问题,目前大多数的磷光器件都是在较低的掺杂浓度(<10%)下才能实现高效的磷光发射[1].此类器件的性能对主体材料及掺杂浓度具有很强的依赖性,这不可避免的造成器件制备的重复性大大降低,会增加未来产业化生产的投资和成本.因此设计合成在具有较好的载流子传输能力,对常规的主体材料具有普适的特性,并在很宽的掺杂浓度范围内,甚至在非掺杂的器件结构中都能实现高性能(低驱动电压、高亮度、高效率)磷光发射的新型材料体系,这无论对促进实验室基础研究还是对提高未来产业化的生产效率都有着深远的意义.
其他文献
Printed electronics represents an appealing approach to creating novel lightweight, flexible, and ultra-low-cost electronic devices.To realize this emerging
光化学传感材料是集化学、物理、材料及电子学等学科于一体,针对特异性的目标识别分子以光学信号为输出信息的发光材料.因其具有选择性好、灵敏度高、响应迅速、检测设备和方
自从1990年第一个聚合物发光二极管诞生后,聚合物发光器件就因其柔性好,效率高,易制备,重量轻,成本低等特性,而被学术界和工业界广泛看好.经过二十年的快速发展,聚合物光电子
以二(二苯基磷酰)胺(Htpip)及其衍生物作为辅助配体,与系列的主配体如2-苯基吡啶、不同位置含有三氟甲基的苯基吡啶[1-3]、2-(2,4-二氟苯基)吡啶[1]、不同位置含有三个氟取代
聚合物太阳能电池中,本体异质结薄膜在纳米尺度上形貌与结构的控制是制备高效率器件的基本条件之一.我们采用在邻二氯苯/正己烷混合溶剂中制备高度结晶的P3HT纳米线来控制P3H
As one of the three primary-colors (red, green, and blue), hunting blue-emitting fluorescent compounds and devices are of still particular importance for applic
继续电子结构分子设计之后,我们开展了聚合物半导体的位阻以及超分子设计,成功实现了基于构象转变的闪存器件、形成了超分子凝胶方法研究,探索了超分子半导体及其薄膜电子学
随着科技的发展,发光材料因其在平板显示和照明领域的广泛应用而备受关注,而高效、稳定蓝光材料的开发则是这一领域的研究热点.2001年,唐本忠课题组[1-2]发现并报道了一类具
近年来,随着白光有机发光器件(WOLED)性能的不断提高,WOLED逐渐展示出其在照明领域的优势,其面光源、易于实现柔性等特点与无机LED照明形成了有益互补,成为下一代固态照明的
基于磷光染料的有机电致发光器件(PHOLED: phosphorescent organic light-emitting diodes)可以同时捕获电致激发的单线态和三线态的激子,使器件的内量子效率有望实现100%,因