从分子前体到金属基功能纳米材料

来源 :第十五届固态化学与无机合成学术会议 | 被引量 : 0次 | 上传用户:feya520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  随着当前社会和技术的发展,信息量以指数级方式增长,高密度信息记录体系制备成为社会和技术上亟待解决的关键问题之一。铁磁相(或者L10相)铂基合金纳米粒子(如FePt,CoPt,Co3Pt 等)因其高矫顽力和化学稳定优势,成为下一代信息高密度垂直磁记录体系的候选材料之一。但是如何快速低成本制作基于L10 相合金纳米粒子的磁记录器件成为当前的一个研究热点问题。传统的无机合成方法需要后退火处理,并伴随烧结,粒径分布过宽等问题。同时现有光刻技术难以将合金纳米粒子直接图案化。为解决这个难题,基于金属聚合物的分子结构可调性,本课题组拓展了一系列单核和异核双金属聚合物的制备,以这些金属聚合物为前体,经高温可控单步分解,创新性实现了多种高性能金属合金纳米粒子的制备,并深入探究了合成参数与纳米材料形貌和性能之间的作用规律,该方法有效克服了传统无机合成方法的弊端,比如需要后退火处理,烧结,粒径分布过宽等问题。更重要的是,本工作首次结合金属芳炔类聚合物的溶液可加工性、成膜性能以及纳米压印光刻技术的优势,实现了铁磁相FePt、CoPt 位元规则介质大面积快速制备,为信息存储领域突破摩尔定律限制、实现信息超高密度垂直磁记录提供一条可行性解决途径。[1]此外,通过简单的自下而上的方法,我们设计并合成了一系列含有单金属或双金属的金属络合二维纳米片。通过不同的界面合成方法(气-液或液-液界面合成),可获得单层或多层二维纳米片。通过调变有机配体的骨架和金属中心,或改变配体中的配位单元数量,二维纳米片的空间结构和排列可以随意控制。另外,通过优化设计配体的结构,这类金属配合物还可形成较强的π-共轭,在可见和近红外区具有强烈的吸收,这些性质将有利于构建具有光敏性和半导体性的纳米片。[2,3]。
其他文献
近40年来,人们开发了近百种无机半导体光催化剂,但是这些催化剂尚无同时具备高量子效率和高可见光利用率,而且催化剂的主要组份大都包含昂贵的、资源稀缺材料,难以实现太阳能光催化技术的实际应用。因此,开发高效、稳定、廉价和环境友好的可见光光催化剂成为当前国际光催化研究的前沿和发展方向之一。近年来,一种仅由C、N两种元素通过sp2杂化组成的共轭半导体—氮化碳聚合物,由于其独特的半导体能带结构和化学稳定性,
会议
多壳层中空结构材料不仅具有单壳层中空结构大比表面积、低密度、高负载量的特点,又具有多个由外至内次序排列的可调变的壳层与壳层空间,能够实现反应物与产物的次序负载与脱出,或光、波的次序吸收与散射,在能源转换与存储、传感、催化、电磁波吸收、药物缓释等领域极具应用潜力[1,2]。然而,结构的复杂性无疑加大了多壳层中空结构的制备难度。我们发展了一种多壳层中空结构材料的普适合成方法—“次序模板法”,通过控制富
多金属氧簇(POMs)具有优异的酸催化、氧化催化及其双功能催化特性,受到科学家们的广泛关注。近年来,我们课题组聚焦POMs催化有机合成及其化学战剂降解,开展了POMs的催化化学研究[1,2]。在POMs催化有机合成方面,我们以钯杂化多钒氧簇[Pd(DMAP)2(acac)]2[V6O11(OMe)8]为催化剂,催化卤代苯甲酸酯与烯烃反应制备芳胺类化合物;使用过渡金属/POMs作为绿色催化剂,催化氧
本文将介绍课题组近两年来在过渡金属氧合团簇、稀土氧合团簇、稀土锗氧团簇及硼氧团簇等氧合团簇化学领域取得的相关进展。
基于特定自旋拓扑结构新颖功能材料的设计与组装是当前研究的热点之一。通过配体设计、功能基元组装等方法 我们得到了系列稀土配合物,研究了其结构和磁性,重点探讨了配合物的弛豫行为和自旋拓扑特性[1-3]。研究结果 对单分子磁体弛豫行为调控及新型磁性材料的设计具有重要指导意义。
会议
金属团簇的结构复杂、金属原子和配体众多,其可控合成具有挑战性。通过发展直接还原法,能够实现金银纳米团簇的控制合成。研究发现,团簇的外围配体可以不仅控制着团簇金属原子的排列方式,还对团簇性能产生重要的影响。本文将以配体保护的金银纳米团簇为研究对象,探讨影响团簇形成的因素,通过前体的选择、配体的设计、反应条件的调节,实现金银纳米团簇的可控合成,并实现了部分团簇的宏量合成,为进一步探讨这些团簇在发光、催
光动力治疗作为一种用光激活的癌症治疗手段问世,至今已经发展成为利用光-物质相互作用产生药效的生物医药的应用平台。然而目前临床应用的光敏剂依旧面临着很多重要的难题,比如如何降低生物背景吸收,实现深度的光动力治疗;在保持足够药效的前提下尽可能地减少用药量,以避免产生严重的毒副作用;体内肿瘤的乏氧微环境容易使癌细胞产生耐PDT效果,并增加PDT治疗后癌症复发的风险。为了解决这些问题,我们基于Ru(Ⅱ)、
顺铂及其衍生物主要通过引起DNA损伤来发挥其活性并诱导肿瘤细胞凋亡。随着分子肿瘤学的发展,分子靶向抗肿瘤药物发展策略之一。在生物分子水平上,G-四链体(G4s)、组蛋白去乙酰化酶(HDACs)、细胞周期素依赖性激酶(CDKs)和雷帕霉素受体蛋白(mTOR)作为有前景的抗癌靶标引起了人们的关注。我们开发了一系列自组装Pt(Ⅱ)配合物,可选择性地结合人体端粒G4,并稳定特定的G4构型。这些Pt(Ⅱ)配
具有大的磁电响应、低的操作电场(或磁场)和室温操作温度是磁电耦合材料应用的关键[1,2]。本文中,作者基于室温多极轴分子基铁电材料合成了首例分子基磁电复合材料。该分子基磁电复合材料的磁电效应研究表明:在 Hdc = 275 Oe 和 Hac = 39 kHz 下,其室温下的磁电电压系数到达186 mV cm-1 Oe-1,为室温分子基磁电复合材料的合成提供了一种新的途径。
多金属氧酸盐(简称多酸)是一种主要基于钼、钨、钒、铌、钽的多金属氧簇化合物,具有多样化的分子结构、独特的氧化还原性质和可调变的能级带隙.近年来发现,多酸可作为电子受体和光生电荷传输媒介,不仅能捕获半导体材料中的光生电子以促进电荷分离,而且具备有效的光生电荷传输功能.目前,多酸已经在光催化、光电化学和太阳能利用等领域显示了极大的应用潜力.近年来,本课题组在基于多酸/半导体复合材料的制备及其光电应用方