以胶体模型体系研究奥斯特瓦尔德分步律的普适性

来源 :第一届全国物理力学青年学术研讨会 | 被引量 : 0次 | 上传用户:zldingkai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  奥斯特瓦尔德分步律(Ostwalds step rule)已被无数实验所证实,但100 多年来其普适性仍未得到公认,一个重要原因就是有极个别观察不到中间亚稳态的所谓“例外”报道。胶体悬浮液体系和原子分子体系在物理上有许多类似的行为表现,因而也成为研究凝聚态物理许多现象的一个非常有价值的模型体系。我们利用胶体模型体系,基于物理力学从微(介)观入手的方法,研究了奥斯特瓦尔德分步律的普适性问题,深化了对结晶动力学途径中存在亚稳态必要性的理解,并对奥斯特瓦尔德分步律的所谓“例外”的可靠性提出了质疑,推进了对分步律普适性的肯定。
其他文献
  We study the existence and stability of periodic solutions of a second order differential equation that models the planar oscillations of a satellite in an
会议
  We establish the existence and uniqueness for one-dimensional stochastic differential equations driven by a Brownian motion and a pure jump Levy processes.
会议
  In this paper we extend an inequality of Lenglart,Lepingle and Pratelli togeneral continuous adapted stochastic processes with values in topology spaces.
会议
  In this report,a general Kolmogorov type predator-prey model is considered.Together with a constant-yield predator harvesting,the state dependent feedback c
会议
  In this talk,I will present recent progress on characterising the path-independence of the density of the Girsanov transformation for stochastic differentia
会议
  平均方程是快慢随机偏微分方程在一定意义下的一个有效逼近,如何利用平均方程研究快慢随机偏微分方程是非常关键的。本报告中我们将首先简单回顾快慢随机偏微分方程的平均
会议
  We introduce a discretization/approximation scheme for reflected stochastic partial differential equations driven by space-time white noise through systems
会议
  An ergodic theorem in the random periodic regime on a Polish space is proved.
会议
  Fluctuation theorem is one of the major achievements in the field of nonequilibrium statistical mechanics during the past two decades.
会议
  Based on a stochastic differential equation model for a single genetic regulatory system,we examine the dynamical effects of noisy fluctuations,arising in t
会议