论文部分内容阅读
Self-diffusion coefficient is a fundamental transport property,essential for understanding the structure and thermophysical behavior of a fluid,as well as for the design of industrial processes.Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO2,methane,propane,n-hexane,n-hexadecane and various poly(ethylene glycol)dimethyl ethers(glymes in short,CH3O-(CH2CH2O)n-CH3 with n=1,2,3 and 4,labeled as G1,G2,G3 and G4,respectively)at different conditions.Various system sizes were examined.The widely used Yeh – Hummer [J.Phys.Chem.B 108,15873(2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size.The magnitude of correction,in all cases examined,is significant,with the smallest systems examined giving for some cases a selfdiffusion coefficient approximately 15%lower than the infinite system-size extrapolated value.The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.