论文部分内容阅读
在网络评论文本的情感分类问题中存在数据的不平衡性、无标记性和不规范性问题。本文提出一种基于主题的阈值调整的半监督学习模型,通过从非结构化文本中提取主题特征,对少量标注情感的文本训练分类器并优化指标调整阈值,达到识别用户评论的情感倾向的目的。仿真研究证明阈值调整的半监督模型对数据非平衡性和无标记性具有较强的适应能力。在实证研究中,本文对酒店评论文本数据构建的文本情感分类器显示模型可以有效预测少数类评论样本的情感极性,证实了基于主题模型的阈值调整半监督网络评论文本情感分类模型在实际问题中的适用性与可行性。